
Typed Architectures: Architectural Support for
Lightweight Scripting

Channoh Kim1∗ Jaehyeok Kim1∗ Sungmin Kim1 Dooyoung Kim1 Namho Kim2

Gitae Na1 Young H. Oh1 Hyeon Gyu Cho1 Jae W. Lee2

1Sungkyunkwan University, Suwon, Korea 2Seoul National University, Seoul, Korea
{channoh, max250, vash4h, dooyoungid, hire1021, younghwan, cho42me}@skku.edu

{kkjknh2, jaewlee}@snu.ac.kr

Abstract
Dynamic scripting languages are becoming more and more
widely adopted not only for fast prototyping but also for de-
veloping production-grade applications. They provide high-
productivity programming environments featuring high lev-
els of abstraction with powerful built-in functions, auto-
matic memory management, object-oriented programming
paradigm and dynamic typing. However, their flexible, dy-
namic type systems easily become the source of inefficiency
in terms of instruction count, memory footprint, and en-
ergy consumption. This overhead makes it challenging to de-
ploy these high-productivity programming technologies on
emerging single-board computers for IoT applications.

Addressing this challenge, this paper introduces Typed
Architectures, a high-efficiency, low-cost execution sub-
strate for dynamic scripting languages, where each data
variable retains high-level type information at an ISA level.
Typed Architectures calculate and check the dynamic type
of each variable implicitly in hardware, rather than explicitly
in software, hence significantly reducing instruction count
for dynamic type checking. Besides, Typed Architectures
introduce polymorphic instructions (e.g., xadd), which are
bound to the correct native instruction at runtime within
the pipeline (e.g., add or fadd) to efficiently implement
polymorphic operators. Finally, Typed Architectures provide
hardware support for flexible yet efficient type tag extraction
and insertion, capturing common data layout patterns of tag-
value pairs. Our evaluation using a fully synthesizable RISC-
V RTL design on FPGA shows that Typed Architectures
achieve geomean speedups of 11.2% and 9.9% with max-

∗ These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08 - 12, 2017, Xi’an, China

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037726

imum speedups of 32.6% and 43.5% for two production-
grade scripting engines for JavaScript and Lua, respectively.
Moreover, Typed Architectures improve the energy-delay
product (EDP) by 19.3% for JavaScript and 16.5% for Lua
with an area overhead of 1.6% at a 40nm technology node.

CCS Concepts •Computer systems organization→ Se-
rial architectures; •Software and its engineering →
Scripting languages

Keywords Instruction Set Architecture, Microarchitecture,
Pipeline, Internet of Things (IoT), Interpreters, Performance,
Scripting languages, JavaScript, Lua, Type checking

1. Introduction
Dynamic scripting languages are being widely used for a va-
riety of complex applications. For example, Lua [28] is a
lightweight scripting language adopted for game program-
ming (e.g., World of Warcraft [22] and Angry Birds [1]) and
writing plug-ins (e.g., Adobe’s Photoshop Lightroom [13]).
JavaScript [7] is the default language for programming the
web, enabling billions of web pages. Python [14], Ruby [19],
R [15], MATLAB [10], and Perl [12] are also popular in var-
ious application domains. They provide high-productivity
programming environments featuring high levels of abstrac-
tion, automatic memory management, object-oriented pro-
gramming paradigm, and dynamic typing.

These scripting languages are also being embraced by
emerging single-board computers for so-called DIY elec-
tronics, such as Raspberry Pi [16], Arduino [24], and Intel’s
Galileo and Edison [3, 5], to name a few. For example, Rasp-
berry Pi promotes Python as the main programming lan-
guage [18]; Arduino offers a variant based on JavaScript [4];
Galileo and Edison provide a JavaScript-based IDE through
Intel XDK [23]. These computers feature small form fac-
tors, low cost, and open-source software stack to make them
an ideal platform for Internet-of-Things (IoT) applications.
Scripting languages can provide many productivity bene-
fits for IoT programming: ease of testing (e.g., JavaScript
runnable on any web browser), natural support for event-

SAMA5D3 [20] Galileo Gen 2 [5] Arduino Yun [2] LaunchPad [8] ARM mbed [29]
(Atmel) (Intel) (Atmel) (TI) (STMicro)

Processor ARM Cortex-A5 Intel Quark SoC X1000 MIPS 24K ARM Cortex-M4 ARM Cortex-M0
ISA ARMv7-A x86 (IA32) MIPS32 ARMv7-M ARMv6-M

Clock Frequency 536MHz 400MHz 400MHz 80MHz 48MHz
L1 Cache 64KB 16KB 0∼ 64KB - -

Main Memory 256MB DDR2 DRAM 256MB DDR3 DRAM 64MB DDR2 DRAM 32KB SRAM 8KB SRAM
Flash Memory 256MB 8MB 16MB 256KB 32KB

OS Linux Yocto Linux Linux (OpenWrt) TI RTOS ARM mbed OS
Power 0.25∼ 1.85W 2.6∼ 4W 700∼ 1500mW 75∼ 225mW 100∼ 110mW

Price (2016) $159 $64.99 $74.95 $12.99 $10.32

Table 1: IoT device platforms

driven programming model (e.g., for sensors), seamless
web-based integration with servers (using JavaScript and
Node.js [11]), and mature user community.

However, scripting languages are still much slower than
native programming languages (e.g., C/C++), to make it im-
practical to use them for developing production-grade appli-
cations on IoT devices. Table 1 summarizes some of the IoT
devices available today [2, 5, 8, 20, 29]. Typically, those de-
vices have a single-core, in-order processor with small main
memory whose size ranges from tens of kilobytes to hun-
dreds of megabytes. Many devices in this class cannot af-
ford the high runtime cost of a scripting language. Conven-
tional dynamic code optimization techniques (e.g., Just-In-
Time (JIT) compilation) may not be viable, either, as the JIT
compiler itself requires a significant amount of additional
memory space and CPU cycles. As a result, many script-
ing engines running on these devices (e.g., Lua [28], Duk-
tape [26]) employ interpreter-based virtual machines (VMs)
without JIT compilation.

Dynamic types are one of the major sources of ineffi-
ciency for scripting languages. With dynamic typing pro-
grammers do not have to specify statically the exact type of
a variable, and an object can be easily extended to integrate
new fields and methods or override existing ones during ex-
ecution. However, this flexibility comes with a cost. Since
type checking and method dispatch are performed with re-
gard to a given program input at runtime, each variable must
carry a type tag, and a type guard must be executed before
any operation that can be overloaded. This significantly in-
creases dynamic instruction count, memory footprint, and
hence energy consumption, compared to statically typed lan-
guages. A recent study [39] estimates about 25% of total
execution time spent for dynamic type checking on the V8
JavaScript engine.

While hardware support for dynamic type checking dates
back to 1970s-80s (e.g., LISP machines), existing propos-
als have either limited applicability targeting a specific
language [30, 33, 46, 50, 52], or a relatively narrow cov-
erage of type checking operations [30, 39], or both. For
lightweight scripting on resource-constrained IoT devices,
low-cost hardware-based acceleration of type checking with
broad coverage is the key.

To address this, we propose Typed Architectures, a high-
efficiency, low-cost execution substrate for dynamic script-

ing languages. The key idea of Typed Architectures is to re-
tain the high-level type information for each variable at an
ISA level. Then dynamic type checking is performed implic-
itly within the pipeline in parallel with instruction execution,
not explicitly in software, hence significantly reducing dy-
namic instruction count. Besides, Typed Architectures intro-
duce polymorphic instructions, which are bound to the cor-
rect native instruction at runtime based on the operand types.
Finally, Typed Architectures provide hardware support for
flexible type tag extraction and insertion to accelerate multi-
ple scripting engines with different data layouts for tag-value
pairs.

We evaluate our proposal by running two production-
grade scripting engines for Lua and JavaScript on FPGA,
using a synthesizable RTL model based on RISC-V Rocket
Core [17]. Typed Architectures achieve maximum speedups
of 43.5% and 32.6% with geomean speedups of 9.9% and
11.2% for Lua and JavaScript, respectively. This compares
favorably to 7.3% and 5.4% geomean speedups by a state-of-
the-art hardware-based type checking technique [30]. More-
over, our synthesis results using a TSMC 40nm standard cell
library report only a 1.6% increase in chip area, while im-
proving the energy-delay product (EDP) by 16.5% for Lua
and 19.3% for JavaScript, respectively.

In summary this paper makes the following contributions:
• We propose a novel ISA extension to efficiently manage

type tags in hardware, which can be flexibly applied to
multiple scripting languages and engines.

• We design and implement the Typed Architecture pipeline,
which effectively reduces the overhead of dynamic type
checking at low hardware cost.

• We prototype the proposed processor architecture us-
ing a fully synthesizable RTL model to execute two
production-grade scripting engines with large inputs on
FPGA (executing over 207 billion instructions in total)
and provide a more accurate estimate of area and power
using a TSMC 40nm standard cell library.

2. Motivation
Figure 1 illustrates the usages and implementation of byte-
code ADD, which requires type guards. The “+” operator is
polymorphic, hence it must be properly guarded to invoke
the right version of the operator function depending on the

1 function add(x,y) return x+y end

2 add(1,2) --(INTEGER) 3

3 add (1 ,2.2) --(FLOAT) 3.2

4 add (1.1 ,2) --(FLOAT) 3.1

5 add (1.1 ,2.2) --(FLOAT) 3.3

6 add ("1" ,"2") --(FLOAT) 3.0

7 add("a","b") --error

(a)

1 for (;;) {

2 // dispatch next bytecode

3 Bytecode bc = *(VM.pc++);

4 switch(OPCODE(bc)) {

5 ...

6 case ADD:

7 // load pointers of RB and RC to rb and rc

8 Value *rb = RB(bc); Value *rc = RC(bc);

9 Number nb, nc;

10 // check if rb and rc is integer

11 // if so , calculate sum and set type

12 if(isInt(rb) && isInt(rc)){

13 type(ra) = INTEGER;

14 ival(ra) = ival(rb) + ival(rc);

15 // convert rb and rc to float

16 // if successful , caculate sum and set type

17 }else if(toNumber(rb ,&nb)&& toNumber(rc ,&nc)){

18 type(ra) = FLOAT;

19 fval(ra) = nb + nc;

20 }else{

21 /* handle exception cases */

22 }

23 break;

24 }

25 }

(b)

1 ADD:

2 ## load pointers of ra , rb and rc to s14 , s10 and s9

3 ...

4 ADD_fast:

5 isInt_Rb:

6 lw a2 ,8(s10) # load type(rb)

7 li a4 ,19 # check if type(rb) is int

8 bne a2 ,a4,isFloat_Rb # if not , jump to isFloat_Rb

9 isInt_Rc:

10 lw a5 ,8(s9) # load & check type(rc) is int

11 bne a5 ,a4,isFlt_Rc # if not , jump to isFlt_Rc

12 ADD(int, int):

13 ld a2 ,0(s10) # load ival(rb)

14 ld a5 ,0(s9) # load ival(rc)

15 add a5 ,a5,a2 # add rb and rc

16 sw a4 ,8(s14) # store type(ra)

17 sd a5 ,0(s14) # store value(ra) to mem

18 j .loop_header # return to loop header

19 isFloat_Rb:

20 li a4 ,3 # check if type(rb) is float

21 bne a2 ,a4,ADD_slow # if not , jump to ADD_slow

22 isFloat_Rc:

23 lw a5 ,8(s9) # load & check type(rc) is float

24 bne a5 ,a4,ADD_slow # if not , jump to ADD_slow

25 ADD(flt, flt):

26 fld f2 ,0(s10) # load fval(rb)

27 fld f5 ,0(s9) # load fval(rc)

28 fadd.d f5,f5,f2 # add rb and rc

29 sw a4 ,8(s14) # store type(ra)

30 fsd f5 ,0(s14) # store value(ra) to mem

31 j .loop_header # return to loop header

32 isFlt_Rc:

33 li a4 ,3 # check if type(rc) is float

34 beq a5 ,a4,cvt_Rb # if then , jump to cvt_Rb

35 ADD_slow:

36 ## convert rb and rc to float

37 ...

(c)

Figure 1: (a) Usages of polymorphic ”+” (add) operator in Lua; (b) Bytecode ADD in C; (c) RISC-V assembly code

operand types. Before adding two operators, say x and y in
Figure 1(a), their types must be checked. Figure 1(b) shows
an excerpt from the bytecode interpreter loop in Lua [28],
which fetches and executes one bytecode at a time. Since the
ADD operation is polymorphic, type guards (shaded in gray)
must be executed to bind to the correct function. Figure 1(c)
shows an RISC-V assembly code of the bytecode gener-
ated by gcc -O3. The overhead of dynamic type checking
is known to be significant and can be broken down into the
following components:

• Tag extraction: The type tag of an operand should be ex-
tracted for a given value (e.g., Line 6 in the RISC-V as-
sembly) for type checking. Although a load instruction
suffices in this example, it may take additional instruc-
tions to extract this field (e.g., shift and mask).

• Tag checking: Type checking examines the types of the
input operands and dispatches to the right version of the
operation being performed. Typically, this is realized by
multiple type guards, each of which consists of type tag
comparison followed by a conditional branch (e.g., Line
12 in Figure 1(b), which corresponds to Lines 5-11 in
Figure 1(c)).

• Tag insertion: This is an inverse operation of type tag ex-
traction. When a new value is produced, the type tag must
be stored together with it (e.g., Line 13 in Figure 1(b)).
Again, it may take additional instructions to insert this
field like shift and mask.

Figure 2(a) shows the breakdown of dynamic bytecodes
for 11 Lua scripts. While Lua defines 47 distinct bytecodes,
a small number of bytecodes (<10) dominates the total dy-
namic bytecode count. Among them Figure 2(b) shows the
number of dynamic instructions per bytecode for the five
most frequently used bytecodes: ADD, SUB, MUL, GETTABLE,
and SETTABLE. Note that GETTABLE and SETTABLE are used
for table lookup and update, respectively, and can use both
an integer and a string as key. Since the five bytecodes are
all polymorphic, they require type guards to select the right
function depending on the operand types. In Figure 2(b) we
count instructions separately for different type pairs as their
numbers of instructions for type guards may vary. A signifi-
cant fraction of instructions are spent executing type guards
for the five bytecodes. According to Dot et al. [39] type
guards account for about 25% of total execution time for the
V8 engine.

0 20 40 60 80 100
Percentage (%)

spectral-norm

random

pidigits

n-sieve

n-body

mandelbrot

k-nucleotide

fibo

fankuch-redux

binary-trees

ackermann

ADD
SUB

MUL
GETTABLE

SETTABLE
MOVE

FORLOOP
CALL

GETUPVAL
RETURN

OTHERS

(a)

 0

 10

 20

 30

 40

 50

 60

(I
nt

,In
t)

(I
nt

,F
lt)

(F
lt,

In
t)

(F
lt,

F
lt)

(I
nt

,In
t)

(I
nt

,F
lt)

(F
lt,

In
t)

(F
lt,

F
lt)

(I
nt

,In
t)

(I
nt

,F
lt)

(F
lt,

In
t)

(F
lt,

F
lt)

(T
ab

,In
t)

(T
ab

,S
tr

)

(T
ab

,In
t)

(T
ab

,S
tr

)

In
st

ru
ct

io
ns

Non-Guard
Guard

SETTABLEGETTABLEMULSUBADD

(b)

Figure 2: (a) Breakdown of dynamic bytecodes in Lua; (b) Dynamic instruction count per bytecode for top five bytecodes

Hardware support for type checking can reduce this over-
head. Existing techniques mostly focus on introducing com-
plex instructions that effectively capture common patterns of
the type checking code [30, 33, 46, 50, 52]. In contrast, our
approach bridges the semantic gap between bytecodes and
the native hardware instructions by (1) maintaining the high-
level operand type at an ISA level for hardware-accelerated
type checking and (2) raising the abstraction level of the na-
tive instructions with polymorphic instructions to implement
polymorphic bytecodes more efficiently.

3. Typed Architectures
Low-cost, high-coverage architectural support for dynamic
typing is the key to enable efficient scripting on resource-
constrained IoT processors, where JIT compilation may not
be viable. We have the following three design objectives for
Typed Architectures:

• High performance: Significant speedups should be achieved
by offloading type checking operations to hardware.

• Flexibility: The ISA extension should be flexible enough
to support multiple, production-grade scripting engines.

• Low cost: The proposed mechanism should incur mini-
mal cost in terms of area and power.

3.1 ISA Extension
Typed Architecture extends the baseline RISC ISA with
the following three capabilities: unified register file, tagged
ALU instructions, and tagged memory instructions. The rest
of this section describes each of them in details.
Unified register file. Typed Architectures extend the register
file with two new fields: 8-bit type and 1-bit F/Ī fields.
The type field stores the type tag for a value as defined
by the script engine. The 8-bit type field can represent 256
distinct types, and we believe it can accommodate most
cases, possibly with simple re-encoding of type tags to fit

in 8 bits. The F/Ī bit is a flag indicating whether the value is
of an integer subtype (0) or floating-point (FP) subtype (1).
This bit can be provided either by software (e.g., extending
the original type field by one bit) or by hardware (e.g.,
registering a specific set of type values in a table to identify
FP subtypes). With this extension a register entry has three
fields, value, type, and F/Ī bit, which are denoted by R.v,
R.t, and R.f, respectively. This register file is unified as it
can hold both integer and FP values.
Tagged ALU instructions. Typed Architectures introduce
three tagged ALU instructions (xadd, xsub, and xmul) to
perform type checking in parallel with value calculation
within the pipeline, as well as a Handler Register (Rhdl) for
handling type mispredictions. When a tagged ALU instruc-
tion is executed, Typed Architecture looks up Type Rule Ta-
ble with the two source type tags and the instruction’s op-
code as key. If it hits, the pipeline executes normally to write
back the output type tag retrieved from the Type Rule Table
together with the output value to the destination register. If
not, a type misprediction has happened, the PC is redirected
to the slow path pointed to by Rhdl to go through the origi-
nal software-based type checking. We assume the Type Rule
Table is pre-loaded only once at program launch.

The three instructions with a prefix x (xadd, xsub, xmul)
are polymorphic instructions. These instructions are bound
to the correct native instruction at runtime according to the
types of the source operands. For example, an xadd instruc-
tion is bound to (integer) add instruction if both operands
are integers, or to (FP) fadd instruction if both operands are
FP values; otherwise, it will jump to the slow path pointed
to by Rhdl.
Tagged memory instructions. Typed Architectures intro-
duce two instructions for memory operations: tld (tagged
load) and tsd (tagged store). tld not only loads a requested
value from memory but also its type tag and F/Ī bit. tsd
works similarly, but to the opposite direction. A type tag
is extracted from an adjacent 64-bit double-word (or the

Instruction Operation Type Tag Handling Description
Memory Instructions
tld Rc, imm(Ra) Rc.v←Mem[Ra.v+imm] Rc.t← extract(Mem[Ra.v+imm+Roffset]) Load dword with tag
tsd Rc, imm(Ra) Mem[Ra.v+imm]← Rc.v Mem[Ra.v+imm+Roffset]← insert(Rc.t) Store dword with tag
Arithmetic and Logical Instructions
xadd Ra,Rb,Rc Ra.v[63:0]← Rb.v[63:0] + Rc.v[63:0] if (type hits)

Rc.t← OutputType(op, Ra.t, Rb.t)
else NextPC← Rhdl

Add (dword)
xsub Ra,Rb,Rc Ra.v[63:0]← Rb.v[63:0] − Rc.v[63:0] Subtract (dword)
xmul Ra,Rb,Rc Ra.v[63:0]← Rb.v[63:0] ×Rc.v[63:0] Multiply (dword)
Configuration Instructions
setoffset Ra Roffset← Ra.v - Set Ra to Roffset

setmask Ra Rmask← Ra.v - Set Ra to Rmask

setshift Ra Rshift← Ra.v - Set Ra to Rshift

set trt Ra TypeRuleTable.push.data(Ra.v) - Push Ra to Type Rule Table (TRT)
flush trt TypeRuleTable.flush() - Flush TRT
Miscellaneous
thdl label Rhdl← NextPC + (disp << 2) - Store label addr to Rhdl

tchk Rb,Rc - NextPC← (type hits) ? PC + 4 : Rhdl Look up TRT with two source type tags (Ra.t and Rb.t)
tget Ra,Rb Ra.v← ZeroExt64(Rb.t) - Copy the type field of Rb to Ra.v (64-bit zero extended)
tset Ra,Rb Rb.t← Ra.v[7:0] - Copy the least significant byte of Ra.v to Rb.t

Table 2: Description of Extended ISA (64-bit)

same double-word with the value) by applying shift-and-
mask. Since the exact location and length of a type tag
is implementation-specific, Typed Architectures introduce
three special-purpose registers to flexibly control tag extrac-
tion and insertion.

• Roffset (Offset Register): This register holds a 3-bit flag
divided into two fields. The two LSBs indicate which
double-word the tag will be extracted from. Since script
engines commonly place a value-tag pair close to each
other, we only offer three choices: next double-word
(01), previous double-word (11), or the same double-
word with the value (00). The MSB controls whether
Not-a-Number (NaN) detection for a FP number is en-
abled or not. Some scripting engines exploit NaN values
to represent non-FP values as well as FP values using a
single 64-bit double-word. The SpiderMonkey JavaScript
engine is such an example, and we discuss more about
how it uses the NaN detection mechanism in Section 4.2.

• Rshift (Shift Amount Register): This register encodes the
starting position (bit) of the type field within the double-
word indicated by the Roffset. Rshift takes 6 bits to point
to any of the 64 bits within the double-word.

• Rmask (Mask Register): This register holds an 8-bit mask
to extract a type tag of the same width. Typically, the
value of Roffset, Rmask, and Rshift is set only once at
initialization.

Miscellaneous instructions. Finally, Typed Architecture
add four more instructions: thdl, tchk, tget, and tset.
thdl sets the value of Rhdl, which points to the starting
address of a type miss handler (i.e., slow path). tchk only
performs type checking without value calculation. It looks
up the Type Rule Table with the two source operand types
and the opcode (i.e., tchk) as key. If it hits, the program
proceeds to the next instruction; if not, it jumps to the slow
path. tget and tset are used to read the type tag of a reg-

1 case: ADD

2 Value *rb = RB(bc); Value *rc = RC(bc);

3 uint64_t tmp1 , tmp2;

4 asm volatile(

5 "tld %0 ,0(%2)\n\t" // load rb (v,t)

6 "tld %1 ,0(%3)\n\t" // load rc (v,t)

7 "thdl ADD_slow\n\t" // set err handler

8 "xadd %0 ,%1,%0\n\t" // ra = rb + rc

9 "tsd %0 ,0(%4)\n\t" // store ra(v,t)

10 "j .loop_header\n\t" // go to loop header

11 : "=&r"(tmp1), "=&r"(tmp2)

12 : "r"(rb), "r"(rc), "r"(ra)

13 : "memory"

14);

15 ADD_slow:
16 Number nb, nc;

17 // convert rb and rc to float

18 // if successful , calculate sum and set type

19 if(toNumber(rb ,&nb) && toNumber(rc ,&nc)){

20 type(ra) = FLOAT;

21 fval(ra) = nb + nc;

22 }else{

23 /* handle exception cases */

24 }

25 break;

Figure 3: Transformed bytecode ADD

ister (tget) or write to it (tset). With these instructions we
can explicitly manipulate register type tags.

Figure 3 illustrates how the original bytecode ADD in
Figure 1(b) is transformed with the ISA extension using in-
line assembly. The modified lines are shown in gray. In Line
5 and 6, Typed Architecture loads the type-value pair of rb
and rc, respectively. Before calculation, Rhdl is set to the
address of ADD slow using thdl in Line 7. xadd looks up
the Type Rule Table with the source operand types and op-
code as key (e.g., (Int, Int, ADD)). If it hits, xadd executes
the addition of source registers (e.g., add instruction) and the
type tag of destination register is set to the output from the
Type Rule Table (e.g., Int). If not, PC is set to the address
held by Rhdl (e.g., ADD slow). Typed Architecture stores a
value-type pair into memory by using tsd in Line 9. Table 2
summarizes the operations of the extended ISA.

PC
Gen. ALUInst $ Data $

FPU

Type
Rule
Table

F/ I Tag Value

R0

R1

Unified RF
…

R31 1

Ra.t, Ra.f

Rb.v

Rc.t

Tag extraction /
insertion logic

Writeback to
Unified RF

Inserted

Extracted

Rc.v

Rb.v

Rc.v

Opcode

Rb.t

Ra.v
Ra.v

Writeback to
Unified RF

Ra.v

Figure 4: Pipeline structure augmented with Typed Architecture

3.2 Pipeline Organization
Figure 4 shows a pipeline structure that implements the ex-
tended ISA introduced in Section 3.1. We add a unified reg-
ister file, a Type Rule Table, and a tag extract/insert logic to
the baseline (shaded in gray). The unified RF replaces the
original untyped register file, since the value from an un-
typed load instruction can be simply marked untyped to by-
pass type checking. When a polymorphic ALU instruction is
issued, say xadd, the instruction is bound to either (integer)
add or (FP) fadd depending on the value of F/Ī bit.

The Type Rule Table is a small content-addressable mem-
ory with three inputs and one output. It takes the tags of the
two source operands and the opcode of the instruction as in-
put and generates the output type tag as output. The contents
of the Type Rule Table are initialized based on the type en-
coding of the scripting engine being executed.
Datapath for xadd, xsub, and xmul. The execution path of
xadd is different from static add instructions in three ways.
First, xadd should select the calculation path at the decode
stage: integer ALU or FP ALU. Second, it accesses the Type
Rule Table for type checking in hardware. If it hits, the out-
put tag is propagated to writeback stage and finally to the
type tag of the destination register. If not, it goes through
the type misprediction path. Finally, there are type mispre-
dictions with tagged ALU instructions. This misprediction
is different from a system-level exception (e.g., divide-by-
zero), which is handled by OS. The type misprediction han-
dler is nothing but the original code with software-based
type checking, and there is no need to return to the tagged
instruction in question for retry.

If an overflow is detected from execution of a polymor-
phic instruction, Typed Architecture generates a type mis-
prediction to redirect execution flow to the slow path. It is
because, in some engines, a type tag is co-located with the
data value within the same double-word and an overflow

may corrupt the type tag. If it is safe to ignore this case,
we can simply turn off overflow detection to prevent unnec-
essary switches to the slow path.

3.3 Memory Access Path
The tagged load instruction (tld) loads both value and tag
into the destination register. However, the data layout for
storing a tag-value pair may vary depending on languages
and implementations. However, most script engines co-
locate a tag-value pair close to each other, and we exploit this
in designing reconfigurable tag extraction/insertion logic. To
balance flexibility and efficiency, we limit the location of the
tag to be located in either one of the two adjacent double-
word or the same double-word with the data value. This logic
is implemented by combining shift and mask operations,
which is reconfigurable using three special-purpose regis-
ters: Roffset, Rmask, and Rshift. If the distance between
the type tag and the value is two or more double-words, one
can first load them using two load instructions, and then use
a tset instruction to pack them into a single register.
Datapath for tld. In most script engines the address of a
type tag has a constant offset from that of the associated
value. For example, Lua has an 8-byte value followed by
a 1-byte tag (i.e., least-significant byte of the next higher
double-word). This 1-byte tag is extracted from memory by
the extractor. The extractor first selects the double-word that
contains the tag using Roffset. Then, the double-word is
shifted and masked using Rshift and Rmask to get the tag.
Datapath for tsd. Tag insertion of tsd is an inverse opera-
tion of tag extraction of tld. Tags must be extended to fit in
memory layout. This process is performed by the tag inser-
tion logic using the same set of the three configuration reg-
isters. The insertion logic make tags sign- or zero-extended
and shifted to restore the original layout. The shifter logic is
shared by both the tag extraction and insertion logic.

VM Bytecode Description

Lua

ADD R(A) := R(B) + R(C)
SUB R(A) := R(B) − R(C)
MUL R(A) := R(B) × R(C)
GETTABLE R(A) := R(B)[R(C)]
SETTABLE R(A)[R(B)] := R(C)

SpiderMonkey

ADD St[-2] := St[-1] + St[-2]
SUB St[-2] := St[-1] − St[-2]
MUL St[-2] := St[-1] × St[-2]
GETELEM St[-2] := St[-2][St[-1]]
SETELEM St[-2][St[-1]] := St[-2]

Table 3: Modified bytecodes in Lua and SpiderMonkey

Lua SpiderMonkey
Roffset (3 bits) 0b001 0b100
Rshift (6 bits) 0b000000 0b101111
Rmask (8 bits) 0b11111111 0b00001111

Table 4: Special-purpose register settings

4. Code Transformation
This section describes how we apply the ISA extension of
Typed Architecture to two popular open-source scripting
engines. Based on bytecode profiling, we identify five hot
bytecodes, which execute type guards, as summarized in
Table 3. R() represents a virtual register, where A, B, and
C are operand IDs. St[-1] and St[-2] denote the top of
stack (TOS) and the second on stack (SOS), respectively.

The five bytecodes are divided into (1) arithmetic oper-
ations (ADD, SUB, and MUL) and (2) table access operations
(GETTABLE and SETTABLE for Lua; GETELEM and SETELEM

for JavaScript). The arithmetic operations do arithmetic cal-
culation using polymorphic instructions if both operands
have the same type; otherwise, it goes to the slow path to
convert them into a FP type (Float) before calculation. The
table access operations are used to access an array or a dic-
tionary table. It takes two source operands: table and key. If
the type of the key is Int, the address of the target element
is simply a sum of the base address of the table and the key;
if it is String, a hash table is used to retrieve the requested
element.

4.1 Lua
We use Lua-5.3.0 [28], which is a register-based virtual ma-
chine. It has 47 distinct bytecodes. The bytecode in Lua
consists of a 6-bit opcode, a 8-bit register field, and two 9-
bit register fields. Lua defines eight primitive types (NIL,
Boolean, Number, String, Table, Function, Thread,
and User data). Although there is only one number type
(Number), Lua internally maintains two subtypes (Int and
Float) to optimize the common case of integer arithmetic.
A struct is defined to store a tag-value pair, where an 8-
byte value is followed by a one-byte tag. Thus, a single Lua

Opcode Typein1 Typein2 Typeout

xadd
Int Int Int

Float Float Float

xsub
Int Int Int

Float Float Float

xmul
Int Int Int

Float Float Float

tchk
Table Int Table

Int Table Table

Table 5: Type Rule Table settings for Lua and SpiderMonkey

variable occupies 16 bytes with the remaining 7 bytes un-
used for alignment. As shown in Table 4, the three special-
purpose registers for tag extraction, Roffset, Rmask, Rshift

are set to be 0b001, 0xFF, and 0b000000, respectively. We
extend the original type tag by one bit to use its MSB as F/Ī
bit.

We retarget the five bytecodes in Table 3 to Typed Archi-
tecture. In fact, bytecode ADD in Figure 1(b) is a simplified
version the bytecode ADD in Lua, and we omit the code due
to their similarity. Likewise, the transformed C code is al-
most the same as the code shown in Figure 3. We also trans-
form the other two arithmetic bytecodes, SUB and MUL, in the
same manner. Table 5 shows the contents of the Type Rule
Table for Lua.

Table access bytecodes consists of two parts: address cal-
culation of an element of the table and element access/up-
date with boundary checking. Before address calculation, the
operand types are checked. We only check the common case
of the Table-Int pair using a tchk instruction. If it passes,
Typed Architecture calculates the address of the indexed el-
ement; if not (e.g., the table is indexed by a String key),
Typed Architecture jumps to execute the slow path, whose
starting address is stored in Rhdl.

4.2 SpiderMonkey: JavaScript Engine for FireFox
SpiderMonkey is the default JavaScript engine for the Fire-
Fox web browser, and we use SpiderMonkey-17.0.0 [21].
It is a stack-based virtual machine having 229 distinct
bytecodes. The opcode in SpiderMonkey has a variable
length, and the bytecode pops the top of stack (TOS) val-
ues as sources. SpiderMonkey defines five primitive types
(Undefined, Null, Boolean, String, and Number).

To represent a number, SpiderMonkey uses the double-
precision IEEE 754 standard floating point representation.
To represent non-FP type numbers, such as Int and String,
SpiderMonkey exploits NaN values, whose exponent bits
are all set to one (i.e., infinity) and fraction bits to a non-
zero value. More specifically, SpiderMonkey sets 13 most-
significant bits (MSBs) to one and uses the following 4 bits
to represent a type. For example, for an Int value, the 32
LSBs are used for data, the 4-bit type field is set to 0b0001,
and 13 MSBs to all ones. To extract the 4-bit type field for
non-FP values, our current implementation uses the NaN

detection logic (Section 3.1) and sets Rmask to 0x0F. If NaN
detection is enabled, the F/Ī bit is set to one if the value is
not NaN.

For tagged load and store instructions the three special
registers are set as follows: Roffset to 0b100, Rshift to
0b101111 (47), and Rmask to 0x0F. For FP values both
tagged load and store instructions behave in the same way
as normal load and store instructions except that the F/Ī flag
is set to one. To extract the type field from a non-FP load
value (i.e., a NaN value), it is shifted right by 47 bits and
masked with Rmask. To store a non-FP value, say in Ra, to
memory, the correct NaN value is reconstructed by putting
together 47 LSBs with the register value (Ra.v[46:0]), 4-bit
type tag (Rmask AND Ra.t), followed by all ones for the
remaining 13 MSBs. Note that tagged ALU instructions like
xadd are executed normally using the F/Ī bit.

5. Discussion
OS interactions. In a realistic setup, OS context switching
should be considered. We extend the register file with F/Ī bit
and tag fields. The two field should be preserved across con-
text switches as register state. The special registers, Roffset,
Rshift, Rmask and Rhdl also must be saved at a context
switch. Finally, the contents of the Type Rule Table must
be preserved as well. When execution of a script is finished,
a flush trt instruction flushes all Type Rule Table entries.
To insert a new entry, one can use a set trt instruction.
Legacy code execution. The energy/power tax for legacy
code execution should be low with Typed Architectures for
the following reasons. First, as for dynamic power, the addi-
tional switching activities caused by the typed datapath will
be minimal as legacy code does not use typed instructions
and the type tag remains constant (untyped). Second, as for
leakage/idle power, our proposal incurs only a small area
overhead (1.6%), hence small power overhead. It is feasible
to apply well-known power management techniques (e.g.,
clock and power gating) to the type-handling path to further
reduce power.
Deoptimizing the fast path. Since frequent type mispre-
dictions can cause significant performance penalty, we can
place a path selector instruction at the header of the fast path
to revert to the slow path if the miss rate is high. For this path
selector instruction one can add a new instruction for slow
path prediction or override the functionality to the thdl in-
struction. It is because thdl has a simple task of updating
Rhdl with an immediate value. However, there is little room
for reordering the thdl instruction without paying stall cy-
cles due to data hazards. Thus, either way, the path selector
instruction trades the performance of the fast path for accel-
erating the slow path.
Application to high performance core. While Typed Ar-
chitecture is also applicable to high-end processors, its ben-
efits are most pronounced on low-end processors where JIT
is not practical. In such a resource-constrained environment

ISA 64-bit RISC-V v2
Architecture Single-Issue In-Order, 50MHz (Synthesized)
Pipeline Fetch/Decode/Execute/Memory/Writeback (5 stages)

Branch
Predictor

32B predictor (128-entry gshare)
62-entry, fully-associative BTB
2-entry RAS, 2-cycle branch miss penalty

Caches

16KB, 4-way, 1-cycle L1 I-cache
16KB, 4-way, 1-cycle L1 D-cache
8-entry I-TLB, 8-entry D-TLB
64B block size with LRU replacement policy

Memory 1GB, DDR3-1066, 1 rank, tCL/tRCD/tRP = 7/7/7
Workloads Lua-5.3.0, JavaScript (SpiderMonkey-17.0.0)

Table 6: Evaluation parameters

JIT may not a viable option. Besides, the effectiveness of JIT
depends highly on the existence of a handful of hot meth-
ods dominating total execution time, which may not be the
case in real workloads [49]. Unlike JIT, Typed Architecture
is applicable to low-end processors and to workloads with-
out hotspots.

6. Experimental Setup
System parameters. Our model is based on open-source 64-
bit RISC-V v2 Rocket core with the default RISC-V/Newlib
target [17]. We have integrated custom performance counters
for performance analysis, such as I-cache miss rate, branch
misprediction rate, and so on. It is a fully synthesizable RTL
model written in Chisel language. This model is compiled
into Verilog RTL, and then synthesized for FPGA emulation
and area/power estimation. We use Xilinx ZC706 FPGAs
for instruction and cycle counts. Table 6 summarizes the
parameters used for evaluation.
Synthesis. We use Synopsys Design Compiler (Version I-
2013.12-SP5) to synthesize the same RTL model for realistic
estimation of area and power. Five TSMC CLN40G technol-
ogy libraries at a 40nm technology node are used, which
consist of a 9-track standard cell library (SC9) and 4 SRAM
libraries generated by ARM Artisan memory compilers. The
most typical corner is selected (rvt tt typical max 0p90v 25c).
The SRAM arrays for tags and data of L1 caches are gen-
erated by memory compilers for high-density single-port
regfile and SRAM, and high-speed dual-port regfile.
Scripting Engines. We use two popular open-source script
interpreters: Lua (Version 5.3.0) [28] and JavaScript (Spi-
derMonkey Version 17.0.0) [21]. We compile both script
interpreters using gcc version 5.2.0, built by the RISC-V
toolchain, with -O3 flag. For Lua we turn off garbage collec-
tion to not interfere the mutator (main) code. However, we
were not able to turn off garbage collection for SpiderMon-
key as there is no simple way to do it. We also implement an
in-house version of Checked Load [30] running on FPGA,
which combines (tag) load, compare, and branch into a sin-
gle instruction. Checked Load represents a state-of-the-art
hardware-based technique for reducing type checking over-
head.

Input script Input parameter Description
ackermann 7 Use of the Ackermann function to provide a benchmark for computer performance
binary-trees 12 Allocate and deallocate many binary trees
fannkuch-redux 9 Indexed-access to tiny integer-sequence
fibo 32 Calculate fibonacci number
k-nucleotide 250,000 Hash table update and k-nucleotide strings
mandelbrot 250 Generate Mandelbrot set portable bitmap file
n-body 500,000 Double-precision N-body simulation
n-sieve 7 Count the prime numbers from 2 to M (Sieve of Eratosthenes algorithm)
pidigits 500 Streaming arbitrary-precision arithmetic
random 300,000 Generate random number
spectral-norm 500 Eigenvalue using the power method

Table 7: Benchmarks

Benchmark summary. We take the benchmark set from re-
cent work [47], initially. However, some benchmarks are re-
placed because fasta and meteor are not working on Spi-
derMonkey and reverse-complement is not working on
Lua. These benchmarks simply do not run to completion on
our FPGA. Moreover, regex-dna spends most of the time
on native library code rather than bytecodes. Instead, we
measure four other benchmarks: n-sieve, random, fibo,
and ackermann. These benchmarks are taken from Com-
puter Language Benchmarks Game [25], where the original
11 benchmarks originate from [43, 47]. We run all bench-
marks to completion and report the instruction and cycle
counts from the beginning and the end of the main inter-
preter loop. Input parameters are summarized in Table 7.

7. Evaluation
7.1 Overall Speedups
Figure 5 shows the overall performance speedups of Typed
Architecture over the baseline. Typed Architecture achieves
geomean speedups of 9.9% and 11.2% for Lua and Spider-
Monkey, respectively, with maximum speedups of 43.5%
and 32.6%. This compares favorably to 7.3% and 5.4%
geomean speedups by Checked Load [30], a state-of-the-
art hardware-based type checking technique. Note that the
checked load instruction (chklb) in [30] is difficult to in-
tegrate into a RISC-style ISA with fixed instruction width
(e.g., 32 bits) as it requires an additional 8-bit immediate
field for a load instruction. Thus, their original design uses a
variable-length x86 64 ISA. We sidestep this problem by in-
troducing a new instruction that sets a type value to a special
register, which is used by chklb for type checking.

The first source of performance improvement with Typed
Architecture is the reduction in dynamic instruction count.
As shown in Figure 6, the dynamic instruction count is
reduced by 11.2% and 4.4% for Lua and SpiderMonkey,
respectively. Besides, Typed Architecture also reduces re-
source pressures to the branch predictor, instruction cache,
registers, and so on. This also brings significant performance
benefits to some benchmarks. We will discuss the perfor-
mance of each scripting engine in greater details.

Lua. The performance improvement of Lua is highly cor-
related with the amount of reduction in dynamic instruction
count. For example, Typed Architecture reduces the instruc-
tion count for fannkuch-redux and n-sieve by 32.9% and
31.8%, respectively. These programs have frequent table ac-
cesses and the type hit rate is very high (as shown in Fig-
ure 9). However, executing fewer instructions is not the only
factor that improves performance. While fibo has a very
small amount of reduction in instruction count, it achieves
a disproportionate speedup due to reduced pressure on the
branch predictor. Figure 7 compares the branch mispredic-
tion rates of the three designs.

There are other benchmarks with smaller performance
improvements even if their type hit rates (Figure 9) are high,
such as mandelbrot, pidigits, and spectral-norm.
They execute CALL bytecodes frequently, which are used to
invoke system calls like printf. k-nucleotide, ackermann
and random also execute many CALL bytecodes for function
calls and file I/O. Thus, these programs have relatively small
room for improvement due to Amdahl’s Law. For n-body,
GETTABLE is the most frequently used bytecode, but there
are also frequent table lookups using a string as key, which
should go through the slow path.

Checked Load [30] achieves a geomean speedup of 7.3%
with maximum speedup 40.8% for fannkuch-redux. Al-
though the maximum speedup is comparable, the geomean
speedup of Checked Load is lower than Typed Architec-
ture. It is because the type combination for the fast path
of each bytecode is fixed at compile time in Checked Load
to optimize a single pair of input types, so it cannot han-
dle both integer- and FP-oriented workloads at the same
time. Instead, Typed Architecture can adapt to both types of
workloads by using polymorphic operators, hence achiev-
ing much more robust performance without requiring re-
compilation. Both mandelbrot and n-body heavily use FP
arithmetic bytecodes, but the Lua VM for Checked Load is
compiled to optimize integer arithmetic, which is the com-
mon case in the other cases.
SpiderMonkey. The reduction in dynamic instruction count
with Typed Architecture is a major source of performance
improvement for JavaScript as well. fannkuch-redux,

-10

 0

 10

 20

 30

 40

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Checked Load
Typed Architecture

JavaScriptLua

Figure 5: Overall speedups for Lua and JavaScript interpreters (the higher, the better)

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEANN
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt
 R

ed
uc

tio
n

(%
)

Checked Load
Typed Architecture

JavaScriptLua

Figure 6: Reduction of dynamic instruction count (the higher, the better)

 0

 20

 40

 60

 80

 100

 120

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

B
ra

nc
h

M
is

s
R

at
e

(M
P

K
I)

Baseline
CheckedLoad

Typed Architecture

JavaScriptLua

Figure 7: Branch miss rates in misses per kilo-instructions (MPKI) (the lower, the better)

n-sieve, and spectral-norm achieve speedups of 32.6%,
21.8%, and 18.6%, with dynamic instruction reduction of
9.0%, 5.7%, and 6.3%, respectively. These programs fre-
quently access tables using GETELEM and SETELEM byte-
codes, featuring high type hit rates (Figure 9). For n-sieve
and fannkuch-redux the branch misprediction rate (shown
in Figure 7) is also reduced by 13.7% and 28.0%, respec-
tively, which is another source of improvement.

In contrast, binary-trees, k-nucleotide, and random
achieve sizable speedups even if the amount of reduction in

both instruction count and branch misprediction rate is rel-
atively small. It is because Typed Architecture reduces the
instruction cache miss rate by 20.7%, 11.6%, and 50.8%,
for the three programs, respectively, as shown in Figure 8.
Among them k-nucleotide shows a smaller performance
gain due to high type miss rate in table accesses (Figure 9).
SpiderMonkey should detect an overflow as a tag-value pair
is co-located within a double-word, in which case Typed
Architecture cannot execute the fast path. (The number of
overflows is not included in Figure 9.)

 0

 2

 4

 6

 8

 10

 12

 14

 16

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

ackerm
ann

binary-tre
es

fannkuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

GEOMEAN

I-
C

ac
he

 M
is

s
R

at
e

(M
P

K
I)

Baseline
Checked Load

Typed Architecture

JavaScriptLua

Figure 8: Instruction cache miss rates in misses per kilo-instructions (MPKI) (the lower, the better)

 0%

20%

40%

60%

80%

100%

ackerm
ann

binary-tre
es

fankuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

Type Hits Type Misses Not Applicable

(a)

 0%

20%

40%

60%

80%

100%

ackerm
ann

binary-tre
es

fankuch-re
dux fibo

k-nucleotide

mandelbrot
n-body

n-sieve
pidigits

random

spectra
l-norm

Type Hits Type Misses Not Applicable

(b)

Figure 9: Type hit and miss rates normalized to dynamic bytecode count for (a) Lua and (b) SpiderMonkey

Checked Load [30] achieves a geomean speedup of 5.4%
with a maximum speedup of 32.4% for fannkuch-redux.
n-body gets worse performance than the baseline due to a
high type miss rate.

7.2 Area and Energy Efficiency
Table 8 shows the area and power estimation of Typed Ar-
chitecture implemented on a RISC-V Rocket Core. The to-
tal area and power of Rocket Core augmented with Typed
Architecture are increased by 1.6% and 3.7%, respectively.
Combined with the speedups in Section 7.1, the EDP is im-
proved by 16.5% for Lua and by 19.3% for JavaScript. Ac-
cording to the area/power breakdown, Typed Architecture
increases the area and power of the core module, which ac-
counts for 6.7% of total area and 14.1% of total power. The
core module integrates 8-bit tags into the register file, dat-
apath for tag propagation, and an 8-entry Type Rule Table.
According to the timing report Typed Architecture does not
affect the critical path as the critical path is in the FPU mod-
ule for both the baseline and Typed Architecture.

8. Related Work
Hardware-based acceleration of type checking. LISP
machines in 1980’s, such as Symbolics 3600 [46], TI Ex-
plorer [31, 33], and SPUR [52], provide hardware support
for runtime type checking. Extending this idea, Steenkiste et
al. [50] propose hardware extensions to the general-purpose
MIPS-X architecture to accelerate LISP workloads. They
show that an average of one fourth of execution time would
be spent in handling tags if type checking is turned off. In the
same spirit we advocate hardware support for type checking.
In contrast to their proposal, which is LISP-specific (e.g., as-
suming the MSBs of a data word are used as type tag), our
proposal aims to flexibly support multiple languages and im-
plementations with low hardware cost to make them viable
even for resource-constrained IoT platforms.

Recently, Anderson et al. [30] and Dot et al. [39] propose
an ISA extension to support JavaScript type checking with
new instructions and register. For accelerating type check-
ing, they propose new complex instructions to control pro-
gram flow depending on type information. However, their
approaches have several limitations. First, they provide hard-

Baseline Typed Architecture
Module Hierarchy Area (mm2) Power (mW) Area (mm2) Power (mW)
Top 0.684 100.0% 18.72 100.0% 0.695 100.0% 19.41 100.0%

- Tile 0.627 91.6% 12.60 67.3% 0.638 91.7% 13.29 68.5%
| - Core 0.038 5.5% 2.22 11.8% 0.047 6.7% 2.74 14.1%
| | - CSR 0.008 1.2% 0.57 3.0% 0.009 1.3% 0.60 3.1%
| | - Div 0.006 0.9% 0.17 0.9% 0.006 0.9% 0.18 0.9%
| - FPU 0.089 13.0% 3.18 17.0% 0.089 12.9% 3.23 16.6%
| - ICache 0.251 36.7% 3.49 18.7% 0.251 36.1% 3.50 18.0%
| - DCache 0.249 36.4% 3.71 19.8% 0.250 36.0% 3.82 19.7%
- Uncore 0.046 6.8% 4.75 25.3% 0.046 6.7% 4.74 24.4%
- Wrapping 0.011 1.6% 1.38 7.4% 0.011 1.6% 1.38 7.1%

Table 8: Hardware overhead breakdown (area, power)

ware support only for type checking operations; still, tag
calculation, insertion, removal, and extraction are explicitly
performed by software with significant overhead. Second,
Checked Load assumes a specific tag-value layout (i.e., the
MSB of a word is reserved for tag), hence having limited ap-
plicability. Our proposal provides a more comprehensive so-
lution with broader applicability as well as higher efficiency
by managing tags mostly in hardware.
Hardware support for metadata processing. Recent work
on hardware-based tag processing, most notably for taint
tracing and memory bound checking, can be viewed as lim-
ited forms of hardware-based type checking [6, 9, 32, 34, 35,
37, 41, 44, 45, 48, 51, 54]. For example, DIFT [51] proposes
to attach a one-bit tag to every variable, indicating authen-
tic or spurious, to dynamically track the information flow
of spurious data (originally through I/O) to thwart a broad
range of security exploits. Hardbound [37] augments every
pointer variable in C with their legitimate bounds to perform
memory bound checking at runtime, hence improving secu-
rity. While some of the hardware features in these proposals
might be relevant to hardware-based type management, their
hardware designs are specialized for different goals and too
inflexible for our use.

To provide flexible tag processing capabilities, some
hardware designs offer configurable options to users [36,
38, 53]. As one of the most recent studies, Dhawan et
al. [38] propose the PUMP architecture (PUMP stands for
“Programmable Unit for Metatdata Processing”), which can
accommodate both DIFT and HardBound [37], for exam-
ple. Their design focuses on generality to support complex
tag propagation and checking rules, which are possibly un-
bounded. However, the PUMP architecture incurs high hard-
ware and energy cost (110% on-chip storage overhead with
60% energy overhead) for this flexibility, hence not suitable
for resource-constrained IoT platforms. In addition, while
aiming to be a general-purpose tag processing architecture,
PUMP only demonstrates relatively simple use cases such
as taint tracing and memory bound checking.
JIT-based Type Specialization A popular approach to
accelerate dynamic scripts is to generate type-specialized
codes with minimal type checks, either statically or dynam-
ically. WebKit’s FTL JIT [27] represents the state-of-the-art

of dynamic, profile-directed JIT compilation for JavaScript,
which builds on the LLVM JIT infrastructure. Some propos-
als [40, 42] exploit both static and dynamic (or profiling-
based) analysis strategies for type specialization of JIT com-
piled code. Kedlaya et al. [42] propose two-pass type infer-
ence: purely static first pass and profile-guided second pass.
In this way they significantly improves the coverage of type
specialization to have fewer type guards. Another interest-
ing approach is to exploit the type information passed from
the original program written in a statically typed language.
For example, Emscripten [55] generates type-specialized
JavaScript codes by compiling statically typed C programs.

While these software-only techniques have achieved
some successes, profile-guided dynamic compilation tech-
niques are not a viable option on emerging IoT devices due
to the high cost of profiling and compilation in terms of CPU
cycles and memory usage. Also, it is difficult to generate ef-
ficient codes with static analyses only, due to the dynamic
nature of modern scripting languages with the lack of type
information at compile time.

9. Conclusion
This paper introduces Typed Architectures, a new class of
processor architectures in which each data value retains
high-level type information at an ISA level. Typed Architec-
tures calculate and check the dynamic type of each variable
implicitly in hardware, rather than explicitly in software,
hence significantly reducing instruction count for dynamic
type checking. According to our experiment using an RTL
prototype on FPGA, Typed Architectures achieve geomean
speedups of 11.2% and 9.9% for two popular scripting en-
gines for JavaScript and Lua, respectively. Moreover, ac-
cording to our synthesis results, Typed Architectures im-
proves the EDP of JavaScript by 19.3% and Lua by 16.5%
with an area overhead of 1.6% at a 40nm technology.

10. Acknowledgments
This work was supported by Samsung Research Fund-
ing Center of Samsung Electronics under Project Number
SRFC-IT1501-07.

References
[1] Angry Birds. https://www.angrybirds.com/games/.

[2] Arduino Yun.
https://www.arduino.cc/en/Main/ArduinoBoardYun.

[3] Intel Edison.
https://software.intel.com/en-us/iot/hardware/edison.

[4] Espruino. http://www.espruino.com.

[5] Intel Galileo.
https://software.intel.com/en-us/iot/hardware/galileo.

[6] Introduction to Intel Memory Protection extensions.
http://software.intel.com/en-us/articles/introduction-to-intel-
memory-protection-extensions.

[7] JavaScript.
https://developer.mozilla.org/en/docs/Web/JavaScript.

[8] TI LaunchPad.
http://www.ti.com/ww/en/launchpad/launchpad.html.

[9] LowRISC. http://www.lowrisc.org.

[10] Matlab. http://www.mathworks.com/products/matlab/.

[11] Node.js–open-source, cross-platform runtime environment
for developing server-side web applications.
https://nodejs.org/.

[12] Perl. https://www.perl.org.

[13] Adobe’s Photoshop Lightroom Developer Center.
http://www.adobe.com/devnet/photoshoplightroom.html.

[14] Python. https://www.python.org.

[15] The R Project for Statistical Computing.
http://www.r-project.org.

[16] Raspberry Pi. https://www.raspberrypi.org/.

[17] Rocket Core. http://riscv.org/download.html.

[18] Raspberry Pi. Usage documentation of Python.
https://www.raspberrypi.org/documentation/usage/python/.

[19] Ruby. https://www.ruby-lang.org/en/.

[20] SAMA5D3 Series Datasheet.
http://www.atmel.com/Images/Atmel-11121-32-bit-Cortex-
A5-Microcontroller-SAMA5D3 Datasheet.pdf.

[21] SpiderMonkey 17. https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/SpiderMonkey/Releases/17.

[22] World of Warcraft interface AddOn Kits.
https://us.battle.net/support/en/article/download-the-world-
of-warcraft-interface-addon-kit.

[23] Intel XDK. https://software.intel.com/en-us/intel-xdk.

[24] Arduino. an open-source electronics platform based on
easy-to-use hardware and software. https://www.arduino.cc.

[25] Computer Language Benchmarks Game.
http://benchmarksgame.alioth.debian.org/.

[26] Duktape. http://duktape.org.

[27] FTL: WebKit’s LLVM based JIT.
http://blog.llvm.org/2014/07/ftl-webkits-llvm-based-jit.html.

[28] The Programming Language Lua. http://lua.org.

[29] ARM mbed. https://www.mbed.com/en/.

[30] O. Anderson, E. Fortuna, L. Ceze, and S. Eggers. Checked
Load: Architectural Support for JavaScript Type-checking on

Mobile Processors. In Proceedings of the 17th IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2011.

[31] P. W. Bosshart, C. R. Hewes, M. D. Ales, M. C. Chang, K. K.
Chau, K. Fasham, C. C. Hoac, T. W. Houston, V. Kalyan,
S. L. Lusky, S. S. Mahant-Shetti, D. J. Matzke, K. N.
Ruparel, J. F. Sexton, C. H. Shaw, T. Shridhar, D. Stark, and
A. L. Lee. A 553 k-transistor lisp processor chip. IEEE
Journal of Solid-State Circuits (JSSC), 1987.

[32] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer.
Defeating memory corruption attacks via pointer taintedness
detection. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN), 2005.

[33] C. J. Corley and J. A. Statz. LISP workstation brings AI
power to a user’s desk. In Computer Design, January, 1985.

[34] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos:
Architectural support for protecting control data. ACM
Trans. Archit. Code Optim. (TACO), 2006.

[35] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible
information flow architecture for software security. In
Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA), 2007.

[36] D. Y. Deng and G. E. Suh. High-performance parallel
accelerator for flexible and efficient run-time monitoring. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2012.

[37] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic.
Hardbound: Architectural Support for Spatial Safety of the C
Programming Language. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2008.

[38] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu,
J. M. Smith, T. F. Knight, Jr., B. C. Pierce, and A. DeHon.
Architectural Support for Software-Defined Metadata
Processing. In Proceedings of the 20th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[39] G. Dot, A. Martı́nez, and A. González. Analysis and
optimization of engines for dynamically typed languages. In
Proceedings of the 27th International Symposium on
Computer Architecture and High Performance Computing
(SBAC-PAD), 2015.

[40] B. Hackett and S.-y. Guo. Fast and Precise Hybrid Type
Inference for JavaScript. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2012.

[41] M. E. Houdek, F. G. Soltis, and R. L. Hoffman. Ibm
system/38 support for capability-based addressing. In
Proceedings of the 8th Annual Symposium on Computer
Architecture (ISCA), 1981.

[42] M. N. Kedlaya, J. Roesch, B. Robatmili, M. Reshadi, and
B. Hardekopf. Improved Type Specialization for Dynamic
Scripting Languages. In Proceedings of the 9th Dynamic
Languages Symposium (DLS), 2013.

[43] C. Kim, S. Kim, H. G. Cho, D. Kim, J. Kim, Y. H. Oh,
H. Jang, and J. W. Lee. Short-circuit dispatch: Accelerating
virtual machine interpreters on embedded processors. In
Proceedings of the 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016.

[44] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and
A. DeHon. Low-fat pointers: Compact encoding and efficient
gate-level implementation of fat pointers for spatial safety
and capability-based security. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2013.

[45] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Innovative
instructions and software model for isolated execution. In
Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (HASP),
2013.

[46] D. A. Moon. Architecture of the symbolics 3600. In
Proceedings of the 12nd Annual International Symposium on
Computer Architecture (ISCA), 1985.

[47] T. Oh, H. Kim, N. P. Johnson, J. W. Lee, and D. I. August.
Practical Automatic Loop Specialization. In Proceedings of
the 18th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2013.

[48] F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn,
K. K. Lai, and J. R. Rattner. Supporting ada memory
management in the iapx-432. In Proceedings of the 1st
International Symposium on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
1982.

[49] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter:
Comparing the behavior of JavaScript benchmarks with real
web applications. In Proceedings of the 2010 USENIX
Conference on Web Application Development (WebApps),
2010.

[50] P. Steenkiste and J. Hennessy. Tags and Type Checking in
LISP: Hardware and Software Approaches. In Proceedings
of the 2nd International Conference on Architectual Support
for Programming Languages and Operating Systems
(ASPLOS), 1987.

[51] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
Program Execution via Dynamic Information Flow Tracking.
In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2004.

[52] G. S. Taylor, P. N. Hilfinger, J. R. Larus, D. A. Patterson, and
B. G. Zorn. Evaluation of the SPUR Lisp Architecture. In
Proceedings of the 13rd Annual International Symposium on
Computer Architecture (ISCA), 1986.

[53] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
Flexitaint: A programmable accelerator for dynamic taint
propagation. In Proceedings of the 14th IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2008.

[54] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton,
and M. Roe. The cheri capability model: Revisiting risc in an
age of risk. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA), 2014.

[55] A. Zakai. Emscripten: An LLVM-to-JavaScript Compiler. In
Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA), 2011.

	Introduction
	Motivation
	Typed Architectures
	ISA Extension
	Pipeline Organization
	Memory Access Path

	Code Transformation
	Lua
	SpiderMonkey: JavaScript Engine for FireFox

	Discussion
	Experimental Setup
	Evaluation
	Overall Speedups
	Area and Energy Efficiency

	Related Work
	Conclusion
	Acknowledgments

