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Abstract—Interpreters are widely used to implement
high-level language virtual machines (VMs), especially on
resource-constrained embedded platforms. Many scripting
languages employ interpreter-based VMs for their ad-
vantages over native code compilers, such as portability,
smaller resource footprint, and compact codes. For efficient
interpretation a script (program) is first compiled into an
intermediate representation, or bytecodes. The canonical
interpreter then runs an infinite loop that fetches, decodes,
and executes one bytecode at a time. This bytecode dispatch
loop is a well-known source of inefficiency, typically
featuring a large jump table with a hard-to-predict indirect
jump. Most existing techniques to optimize this loop focus
on reducing the misprediction rate of this indirect jump
in both hardware and software. However, these techniques
are much less effective on embedded processors with
shallow pipelines and low IPCs.

Instead, we tackle another source of inefficiency more
prominent on embedded platforms–redundant computa-
tion in the dispatch loop. To this end, we propose Short-
Circuit Dispatch (SCD), a low-cost architectural extension
that enables fast, hardware-based bytecode dispatch with
fewer instructions. The key idea of SCD is to overlay the
software-created bytecode jump table on a branch target
buffer (BTB). Once a bytecode is fetched, the BTB is looked
up using the bytecode, instead of PC, as key. If it hits, the
interpreter directly jumps to the target address retrieved
from the BTB; otherwise, it goes through the original
dispatch path. This effectively eliminates redundant com-
putation in the dispatcher code for decode, bound check,
and target address calculation, thus significantly reducing
total instruction count. Our simulation results demonstrate
that SCD achieves geomean speedups of 19.9% and 14.1%
for two production-grade script interpreters for Lua and
JavaScript, respectively. Moreover, our fully synthesizable
RTL design based on a RISC-V embedded processor shows
that SCD improves the EDP of the Lua interpreter by 24.2%,
while increasing the chip area by only 0.72% at a 40nm
technology node.

Keywords-Microarchitecture; Pipeline; Scripting Lan-
guages; Bytecodes; Interpreters; Dispatch; JavaScript; Lua

I. Introduction

Recently, the role of scripting languages has grown
from a fast prototyping tool to a general-purpose pro-
gramming environment that enables a variety of com-

†These authors contributed equally to this work.

plex applications. For example, JavaScript is the default
programming language for online web applications,
and also being widely used for writing web servers
(e.g., Node.js [1]) and standalone client applications
(e.g., WebOS [2], Tizen [3]). Python [4], Ruby [5],
PHP [6], and Lua [7] are also popular in various
application domains. These scripting languages pro-
vide higher levels of abstraction with powerful built-
in functions to allow the programmer to do more with
fewer lines of code.

Scripting languages usually feature dynamic types,
where the exact type of a variable is resolved only
at runtime for a given program input. This makes it
difficult for a static compiler to produce efficient code.
Thus, interpreter-based virtual machines (VMs) are a
popular execution environment for these languages,
possibly augmented with dynamic code optimization
techniques (e.g., Just-In-Time (JIT) compilation). How-
ever, JIT compilation is not practical on resource-
constrained embedded devices for its large resource
footprint and complexity of implementation, which
leads to a longer time-to-market [8].

For efficient interpretation a script is first compiled
into a platform-independent intermediate representa-
tion, or bytecodes, to eliminate the recurring cost of
parsing the script. The canonical interpreter runs an
infinite loop that fetches, decodes, and executes one
bytecode at a time. Typically, the dispatcher code looks
up a large jump table to retrieve the target address for
a given bytecode, followed by an indirect jump, which
often becomes the principal source of slowdown [8].

More specifically, two major sources of inefficiency
exist in the dispatcher code. First, the target address
of the indirect jump is difficult to predict with tens
or even hundreds of potential targets, to cause fre-
quent branch mispredictions. Second, it takes a large
number of dynamic instructions to perform decode,
bound check, and target address calculation for every
bytecode, which are mostly redundant.

Most existing techniques tackle the first source to
predict better the target address of the indirect jump in
both hardware [9, 10, 11, 12, 13, 14] and software [8, 15,
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1 for (;;) {
2 // fetch next bytecode

3 Bytecode bc = *(VM.pc++);

4 // decode and jump

5 int opcode = bc & mask;
6 switch (opcode) {
7 // execute bytecode

8 case: LOAD
9 do_load(RA(i),RB(i));

10 break;
11 case: ADD
12 ...

13 default:
14 error();

15 }

16 }

(a)

1 Fetch:

2 ldq r5,40(r14) # r5 = Mem[r14 + 40]

3 ldl r9,0(r5) # r9 = Mem[r5]

4 lda r5,4(r5) # r5 = r5 + 4

5 stq r5,40(r14) # Mem[r14 + 40] = r5

6 Decode-and-Jump: ## slow path ##

7 ## decode
8 and r9,63,r2 # r2 = r9 & 63

9 ## bound check
10 cmpule r2,45,r1 # r1 = (r2 <= 45)

11 beq r1,Default # branch if (r1 == 0)

12 ## target address calculation and jump
13 ldah r7,T(r3) # r7 = r3+(T[31:16] <<16)

14 lda r7,T(r7) # r7 = r7 + T[15:0]
15 s4addq r2,r7,r2 # r2 = (r2 << 2) + r7

16 ldl r1,0(r2) # r1 = Mem[r2]

17 addq r3,r1,r1 # r1 = r3 + r1

18 jmp r31,(r1),Load # jump to r1

(b)

1 // save the labels

2 void *labels[] =
3 {&&LOAD, &&ADD, ...};

4 // fetch; decode; jump

5 Bytecode bc = *(VM.pc++);

6 int opcode = bc & mask;

7 goto *labels[opcode];
8
9 LOAD:

10 do_load(RA(i), RB(i));

11 // fetch; decode; jump

12 bc = *(VM.pc++);

13 opcode = bc & mask;

14 goto *labels[opcode];
15 ADD:

16 ...

17 Default:

18 error();

(c)

Figure 1: (a) Canonical dispatch loop in C; (b) Alpha assembly code; (c) Jump-threaded dispatch loop

16, 17, 18, 19]. However, our analysis (in Section II-A)
demonstrates that these techniques are less effective
on embedded processors with shallow pipelines and
low IPCs. To mitigate the second source of ineffi-
ciency, some ISAs include complex instructions, which
combine multiple simpler instructions into a single
instruction to make the dispatcher code more compact
(e.g., table branch instructions in ARM [20]). However,
these instructions only reduce instruction count but do
not eliminate redundant computation, hence yielding
limited speedups.

This paper proposes Short-Circuit Dispatch (SCD),
a low-cost architectural extension for fast, hardware-
based bytecode dispatch. The key idea of SCD is
to overlay the software-created bytecode jump table
on a branch target buffer (BTB). Using the BTB as
an efficient hardware lookup table, SCD caches most
frequently used jump table entries in a portion of the
BTB. Once a bytecode is fetched, the BTB is looked
up using the bytecode, instead of PC, as key. If it hits,
the interpreter directly jumps to the target address for
the bytecode; otherwise, it goes through the original
dispatch path. Unlike multi-target indirect branch pre-
dictors [9, 10, 11, 12, 13, 14], where the target address
must still be computed in software, SCD is the first
to use the BTB as a cache for the bytecode jump table,
bypassing most of the redundant instructions for target
address calculation with minimal hardware cost.

We evaluate SCD on two production-grade script
interpreters for Lua and JavaScript with 11 scripts for
each, using both a cycle-level simulator and a synthe-
sizable RTL model on FPGA. Our simulation shows
that SCD achieves geomean speedups of 19.9% and
14.1% with maximum speedups of 38.4% and 37.2%
for Lua and JavaScript, respectively, while a state-of-

the-art indirect branch predictor [9] yields only 8.8%
and 5.3% geomean speedups. Moreover, our fully syn-
thesizable RTL model based on a RISC-V embedded
processor shows a geomean speedup of 12.0% with a
maximum speedup of 22.7% for the Lua interpreter
running on FPGA1. According to our synthesis results
using a TSMC 40nm standard cell library, SCD im-
proves the EDP of the Lua interpreter by 24.2%, while
increasing the chip area by only 0.72%.

This paper makes the following contributions:
• We propose a novel architectural extension that

enables fast, hardware-based bytecode dispatch,
thus eliminating most of the redundant compu-
tation in the bytecode dispatch loop.

• We design and implement SCD, which efficiently
overlays the bytecode jump table onto the BTB
with minimal hardware overhead.

• We provide a detailed evaluation of two
production-grade script interpreters using a cycle-
level simulator to demonstrate the effectiveness
of SCD over the state-of-the-art.

• We run a fully synthesizable RTL model on FPGA
to provide more realistic evaluation of SCD with
larger inputs (executing over 2.29 trillion instruc-
tions in total) and more accurate estimation of
area and energy consumption via synthesis using
a TSMC 40nm standard cell library.

II. Motivation
A. Interpreters on Embedded Processors

Single-board computers are becoming more and
more popular for so-called DIY electronics, includ-
ing Arduino [21], Raspberry Pi [22], and Intel’s

1We were not be able to build SpiderMonkey on RISC-V/Newlib
successfully due to missing libraries at the time of this writing.
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Figure 2: Branch MPKI breakdown for Lua interpreter

Galileo [23], to name a few. These computers com-
monly feature small form factors, low cost, flexible I/O
interfaces, and open-source hardware/software stack,
to enable a variety of IoT applications. Scripting lan-
guages are already widely adopted in those platforms
for their productivity benefits. For example, Raspberry
Pi promotes Python [24] as default programming lan-
guage, and Intel supports JavaScript for IoT program-
ming through Intel XDK [23].

Many single-board computers [21, 22, 23, 25, 26, 27]
employ single-core embedded processors with a shal-
low pipeline running at tens to low hundreds of MHz
and small memory size ranging from KBs to low hun-
dreds of MBs. In such a resource-constrained environ-
ment interpretation is often a more viable option to run
scripts than JIT compilation due to its smaller resource
footprint and ease of development [8]. Unfortunately,
interpreted codes are far too slower than compiled
codes, and this efficiency gap should be adequately
addressed for scripting languages to be more widely
used not only for prototyping but also for production.

Figure 1(a) shows a simplified C code of the canon-
ical dispatch loop for VM interpreters. At every itera-
tion the dispatcher code fetches a new bytecode (e.g.,
ADD R1, R2, R3 in Lua) and increments the virtual
PC (Line 3), decodes it to extract an opcode (e.g., 6-
bit numeric code (0x0E) representing ADD in Lua),
calculates the target address to the handler (embedded
in the switch statement), and jumps to the target
address (e.g., to Line 11 for ADD) to execute the byte-
code. Although simple, this code represents a common
pattern among script interpreters and instruction-set
simulators.

Figure 1(b) shows an Alpha assembly code for the
dispatcher code (corresponding to Lines 2-6 in Fig-
ure 1(a)) generated by gcc with a -O3 flag. It con-
sists of four components: bytecode fetch (Lines 2-5),
decode (Line 8), bound check (Lines 10-11), and target
address calculation and jump (Lines 13-18). Since script
interpreters typically have tens or even hundreds of

distinct bytecodes, a jump table is widely used. Thus,
the indirect jump at the end is hard to predict as it has
as many potential targets as the number of bytecodes.
The conventional, PC-indexed BTB performs poorly
for this jump instruction, which is a major source of
inefficiency in the VM interpreter. Figure 2 confirms
this with most branch mispredictions attributed to the
indirect jump for dispatch in the Lua interpreter. (Refer
to Section V for simulation methodology.)

Naturally, most existing techniques for accelerating
interpreters focus on reducing the misprediction rate
of the indirect jump instruction in both hardware
and software. Hardware techniques propose more so-
phisticated indirect branch predictors that support
multi-target prediction from a single indirect jump [9,
10, 11, 12, 13, 14]. In contrast, software techniques
apply code transformations to reduce misprediction
rate. Figure 1(c) illustrates a popular example of such
techniques, called jump threading [8]. Jump-threaded
dispatch requires a compiler support to store the ad-
dresses of all labels into a static array (Lines 2-3), such
as Labels-as-Values GNU extension. In essence, jump
threading replicates the dispatcher code at the end of
each bytecode handler (Lines 12-14) so that each of the
replicated indirect jumps occupies a distinct BTB entry.
A downside of jump threading is that it can cause a
code bloat to increase instruction cache misses.

Although these techniques significantly reduce the
misprediction rate, they are not effective on embedded
processors. To make this point we present a simple
analysis of CPI improvement when a new, sophis-
ticated indirect branch predictor is employed. The
amount of CPI improvement (α) can be represented
as follows:

α =
CPIBase

CPINew
=

1
1− ∆CPI

CPIBase

=
1

1−β

where

β =
∆CPI

CPIBase

=

# bytecodes
Total inst. count

(1)
∗∆mispred rate(2) ∗miss penalty(3)

CPIBase
(4)

According to the formula, the CPI improvement (α)
is usually smaller on an embedded processor than a
desktop/server processor. The first two terms in the nu-
merator of β (denoted by (1) and (2); 0 ≤ β ≤ 1) remain
relatively constant for the two, assuming the same
ISA and branch predictors. However, the embedded
processor generally has lower branch misprediction
penalty (denoted by (3)) due to shallower pipeline and
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Figure 3: Fraction of dispatch instructions for Lua

higher CPIBase (denoted by (4)) due to narrower issue
width, smaller caches, in-order scheduling, and so on.

Our simulation with Value-Based BTB Indexing
(VBBI) predictor [9], representing the state-of-the-art,
also confirms this point. VBBI aims to improve the in-
direct branch prediction accuracy for switch statement
and virtual function calls. To index the BTB, VBBI uses
a hash of the PC and a hint value that controls the
branch (e.g., opcode), instead of the PC alone to ef-
fectively eliminates most of the branch mispredictions
from the dispatcher code (with a <0.1% misprediction
rate). However, this leads to only modest speedups
at best on an embedded processor, with geomean
speedups of 8.8% and 5.3% for Lua and JavaScript
interpreters, respectively. (See Figure 7 in Section VI for
more details.) Therefore, we need alternative solutions
to accelerate VM interpreters on embedded processors.

B. Redundant Computation in Interpreters
Figure 3 shows a fraction of dispatch instructions

(as in Figure 1) out of the entire interpreter loop
on the Lua interpreter. All instructions between the
interpreter loop header and the indirect jump to a
handler are counted as dispatcher code. More than 25%
of total instructions are spent on the dispatcher code.
Rohou et al. [8] report a similar range of numbers for
other VM interpreters measured on a x86 64 architec-
ture: 16-25% for Python, 27% for JavaScript, and 33%
for CLI (Common Language Infrastructure, or .NET
framework).

We identify a major fraction of the dispatcher code
as redundant. More specifically, the instructions for
decode, bound check, and target address calculation
(Lines 8-18 shaded in gray in Figure 1(b)) implement
a pure function with no side effect, which always pro-
duces the same output value (i.e., jump target address)
for the same input (i.e., bytecode).

This code block makes an ideal target for mem-
oization, which effectively eliminate redundant com-
putation, reducing dynamic instruction count signifi-

Instruction Description
setmask Rn
(Set-mask) Rmask← Rn

<inst>.op
(Suffix-for-Rop-update)

execute <inst>
Rop.d ← Rmask & result of <inst>
Rop.v ← 1

bop
(Branch-on-opcode)

if (Rbop-pc == PC && Rop.v
&& BTB.valid(Rop.d ))
PC ← BTB.targetaddr(Rop.d )
Rop.v ← 0

else PC ← PC + 4
Rbop-pc ← PC of bop

jru Rn
(Jump-register-
with-jte-update)

PC ← Rn
if (Rop.v )

BTB.update(Rop.d , Rn)
Rop.v ← 0

jte flush
(Flush-all-jte)

Flush all jump table entries in BTB
Rop.v ← 0

Table I: ISA extension with SCD

cantly. Furthermore, bypassing this code block elimi-
nates 10 cache accesses (for both instructions and data)
to save energy consumption. Thus, we investigate a
non-prediction-based technique to capitalize on this
opportunity to improve both performance and energy
efficiency of the VM interpreter.

III. Short-Circuit Dispatch

This section introduces Short-Circuit Dispatch
(SCD), an ISA extension and microarchitectural
organization, which effectively eliminates the two
sources of inefficiency in the VM interpreter discussed
in Section II (i.e., frequent branch mispredictions and
redundant dynamic instructions). The key idea of SCD
is to use part of the BTB to cache a software-created
jump table for the dispatcher to be short-circuited to
the correct target address upon fetching a bytecode.
Although we assume only one critical jump table
(i.e., the one for the dispatcher code) in this section,
SCD can be easily extended to support multiple jump
tables, which is discussed in Section IV. We have the
following three design goals for SCD:
• Broad applicability: The ISA extension should be

flexible enough to be applicable to multiple pop-
ular VM interpreters.

• High performance: The proposed design should
yield significant speedups for those interpreters to
outperform prior work.

• Low cost: The cost of implementation should be
minimal in terms of area and power.

A. ISA Extension

To perform a jump table lookup on the BTB, SCD
introduces three new registers as follows:
• Rop (Opcode Register): This register holds an opcode

to dispatch and is composed of two fields: one-bit
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1 Fetch:

2 ldq r5,40(r14)

3 ldl.op r9,0(r5)

4 lda r5,4(r5)

5 stq r5,40(r14)

6 Branch-on-opcode:

7 bop
8 Decode-and-Jump: ## slow path ##

9 ## decode

10 and r9,63,r2

11 ## bound check

12 cmpule r2,45,r1

13 beq r1,Default

14 ## target address calculation and jump

15 ldah r7,T(r3)

16 lda r7,T(r7)

17 s4addq r2,r7,r2

18 ldl r1,0(r2)

19 addq r3,r1,r1

20 jru r31,(r1),Load

Figure 4: Transformed dispatch loop (original code
taken from Figure 1(b))

valid flag (Rop.v ) and 32-bit data field (Rop.d). The
data field is used as key for a BTB lookup.

• Rmask (Mask Register): This register holds 32 mask
bits to extract an opcode (numeric code that en-
codes the operation to perform like ADD) from a
bytecode. Typically, the value of this register is set
just once when the interpreter is launched.

• Rbop-pc (BOP-PC Register): This register holds the
PC value of the indirect jump instruction at the
end of the dispatcher code. When the indirect
jump instruction is fetched, the BTB is looked up
for fast dispatch using the opcode stored in Rop.

Figure 4 illustrates how the original dispatcher code
in Figure 1(b) is re-targeted to SCD for efficient dis-
patch. The modified lines are shown in gray. In Line 3
the load instruction (ldl) is suffixed with .op, which
indicates the bytecode must be written not only to
r9 but also to Rop (Opcode Register) after masking
with Rmask. The masking operation corresponds to the
decode instruction in Line 8 of Figure 1(b). Then bop
(branch-on-opcode) looks up the BTB with Rop.d as key
to see if a jump table entry (JTE) already exists for the
opcode (Line 7). If it hits, PC is redirected to the target
address retrieved from the BTB; otherwise, it will just
fall through to the slow path starting from Line 8. The
original indirect jump (jmp) instruction is replaced with
jru (jump-register-with-jte-update) in Line 20, which
jumps to the target address (r1) and inserts a (Rop.d,
r1) pair into the BTB. Note that, once a dispatch is
completed by either bop (fast path) or jru (slow path),
Rop is invalidated by resetting Rop.v to zero.

Table I summarizes the new instructions introduced
by SCD. In addition to the three instructions discussed
with Figure 4 (<inst>.op, bop, jru), there are two

more instructions. setmask sets the value of Mask
Register (Rmask), which is set before the interpreter
loop begins. For example, since the opcode field of a
Lua bytecode is placed at the 6 least-significant bits
(LSBs), the mask bits are set to 0x0000003F. jte flush
is used to invalidate all jump table entries currently
residing in the BTB. This instruction is invoked at
a context switch or exit of the interpreter loop to
prevent erroneous operations. Interactions with OS are
discussed in greater details in Section IV.

B. SCD Organization
Figure 5 shows a pipeline structure to implement

the extended ISA introduced by SCD in Section III-A.
To minimize hardware cost we overlay (part of) the
software-created jump table onto the BTB. This is
different from Case Block Table (CBT) [28], which is
similar in spirit but requires an auxiliary on-chip table
to store jump target addresses. A BTB entry is extended
with a new flag, called J/B̄ bit. If this bit is set to one (J),
the entry holds a jump table entry (JTE) for a bytecode;
if zero (B̄), it holds a normal BTB entry. The rest of
this section covers various issues in microarchitectural
design.
Datapath for <inst>.op. To implement <inst>.op
(suffix-for-Rop-update), the following three components
are newly added: 32-bit Mask Register (Rmask), 32-bit
Opcode Register (Rop), and 32-bit AND gate. Once
execution of <inst> is completed in the Execute stage,
the result is masked with Rmask and stored into Rop.
By providing Mask Register SCD saves (at least) one
instruction as the opcode is automatically extracted
from the bytecode just calculated. The opcode stored
in Rop serves as a VM instruction (and Rop as virtual
instruction register (IR)), which will later be used by
bop and jru instructions.
Datapath for bop. Rbop-pc is used to store the address
of the critical indirect jump instruction that dispatches
bytecodes. At every cycle the value of PC is compared
with that of Rbop-pc to see if this jump instruction is
being fetched. If they match (i.e., the bop? signal is
true), Rop.d is used as input for BTB lookup instead
of PC. If it hits, the cached jump table entry (JTE) is
retrieved, and PC is redirected to its target address in
the following cycle; if not, PC is just incremented by 4
(assuming 32-bit instructions). Note that, in case of a
hit Rop.v is reset to zero. Finally, Rbop-pc is updated to
hold the pointer to the bop instruction.
Datapath for jru and jte flush. A new JTE is
inserted into the BTB by jru, which replaces the critical
jump (jmp) instruction in the original dispatcher code.
A JTE is formed by putting together a valid opcode
(from Rop) and its target address (from the source
register) in the Execute stage. Since a BTB entry can
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Figure 5: Pipeline structure augmented with SCD

now hold both an original BTB entry (providing PC-
to-target address prediction) and an JTE (providing
opcode-to-target address translation), it is extended
with a new flag, JTE/BTB (J/B̄) bit, to indicate which
one it currently holds. A valid JTE in the BTB has the
J/B̄ bit set to one; if the valid bit (V) is zero, this flag is
ignored. When a short-circuited dispatch is attempted
with an opcode in Rop, only JTEs (but not BTB entries)
will be searched for a match. Likewise, jte flush
invalidates (i.e., resets the valid bit to zero) only JTEs
but not BTB entries.

Stall logic. There may be cases when the value of
Rop is not available yet when a bop enters the Fetch
stage. There are two solutions to this. First, the pipeline
normally proceeds with the bop falling through to
the slow path. In this case there is no performance
improvement from short-circuited dispatch. Second,
the pipeline detects any in-flight instruction to update
Rop, and stalls the bop at the Fetch stage until the
value of Rop becomes available. This inserts several
bubbles (nop’s) into the pipeline, but can benefit from
short-circuited dispatch. Since we target embedded
processors featuring shallow pipelines, the benefit of
fast dispatch generally outweighs the cost of bubbles.
Thus, SCD adopts the second (stalling) scheme by
default, which is implemented by stall logic in Figure 5.

JT/BTB entry replacement. Since both JT and BTB
entries share the same BTB, a replacement policy
should be carefully designed. The default policy is to
give a higher priority to the JTE. In other words, an
incoming JTE can evict a BTB entry, but not the other
way around. This policy is justified with the following
facts. Our evaluation reveals that, even if an interpreter
defines tens or even hundreds of distinct bytecodes,
only a small fraction of them, say at most low tens of
them, are actually used. Since high tens, or hundreds of
BTB entries are already the norm in today’s processor

designs, there is still enough headroom. Moreover, a
JTE is generally more likely to be reused than a BTB
entry.
Example walk-through. To demonstrate the operations
of SCD, we walk through an example scenario shown
in Figure 6. Figure 6(a) depicts the initial state of the
BTB with the tag field omitted for brevity. Initially,
there are two valid BTB entries but no JTEs. We assume
Rbop-pc is already set correctly to point to the address
of bop in the dispatch loop. After each step affected
parts are shaded in gray.

Step 1 (slow path): Figure 6(b) shows the operation of
the slow path (bop miss) inserting a new JTE into the
BTB. 1⃝ When a new bytecode, say OP LOAD, enters
the pipeline (marked by a *.op suffix), it is masked
with Rmask and stored into Rop. A BTB lookup with
Rop.d at bop fails as no JTE is cached yet, hence falling
through to the slow path. Then jru inserts a new JTE
for OP LOAD into the BTB.

Step 2 (fast path): Figure 6(c) illustrates the operation
of the fast path (bop hit). 1⃝ If an OP LOAD bytecode is
loaded into the pipeline again, a BTB lookup by bop
hits this time. 2⃝ Then the dispatcher code is short-
circuited to immediately jump to the target address for
OP LOAD, which constitutes the fast path for dispatch.

Step 3 (jte flush): Figure 6(d) shows the operations
of jte flush, which is called when the interpreter
exists from the dispatch loop. jte flush invalidates
all JTEs in the BTB (but not BTB entries) by resetting
their valid bits to zero.

C. Applying SCD to Popular Interpreters
To demonstrate the practicality of SCD, we apply

SCD to two popular open-source script interpreters:
Lua [7] and SpiderMonkey [29]. Lua is the most pop-
ular programming language for game programming,
especially for writing plug-ins. SpiderMonkey is the
default JavaScript engine for the Firefox web browser.
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Figure 6: Running example of SCD operations

While SpiderMonkey provides a JIT compiler, we turn
it off to run in interpreter mode. We produce SCD-
augmented script versions as follows.
Lua [7]. We use Lua-5.3.0. The interpreter loop starts at
Line 661 in src/lvm.c. In fact, the canonical interpreter
loop code in Figure 1(a) is a stripped-down version of
the Lua interpreter loop, and we omit the code due
to their similarity. Likewise, the transformed assembly
code is almost the same as the code shown in Figure 4.
SpiderMonkey [29]. The main interpreter loop
of SpiderMonkey-17.0 begins at Line 1322 in
js/src/jsinterp.cpp. SpiderMonkey adopts
variable-length bytecodes, and the program control
takes different paths before reaching the common
dispatcher code depending on the length of the
bytecode. SpiderMonkey fetches a bytecode not only
at the common dispatcher code block but also at the
end of some bytecodes, such as FUNCALL, BRANCH, LT,
and so on. Thus, we apply an .op suffix to the load
instructions at three different locations: Line 1329
(default), Line 2480 (FUNCALL) and Line 1199 (common
macro for the others). Otherwise, the transformed
dispatch loop would look similar to Lua.

IV. Discussion
Supporting multiple jump tables. SCD can be applied
to any jump table-based indirect jumps beyond the
bytecode dispatch loop and can be easily extended
to track multiple jumps. To support n indirect jumps
simultaneously, we need to replicate the set of three
registers (Rop, Rmask, and Rbop-pc) by n times and expand
the J/B̄ bit to an n-bit vector. A preferred implementa-
tion uses a one-hot encoding for branch ID to simplify
hardware. All instructions in Table I are also extended
to take a branch ID as immediate or register value
to specify which indirect branch they are referring to.
In the Fetch stage PC is compared with n Rbop-pc’s in
a way similar to the tag comparison in a n-way set-
associative cache. If any Rbop-pc hits, its ID (one hot-
encoded) will be used for BTB lookup. Likewise, jru
also uses the branch ID value when inserting a new
JTE into the BTB.

OS Interactions. In a realistic setup we should con-
sider OS context switching. There are a spectrum of
policies with regard to how we handle the newly
introduced registers. Unlike BTB entries, which are
used for prediction, JTEs directly affect the program
execution path such that they should be either saved
or flushed at the context switch. Our preferred way
of handling it is to flush JTEs (and Rop) to minimize
changes to the OS code. This is achieved by simply
inserting a jte flush instruction. Even so, we should
save the Mask Register (Rmask) as the value of Rmask
must be preserved until the end of execution to ensure
correctness. Once a process is scheduled again after a
context switch, there will be no JTEs in the BTB, and it
will take some cycles to populate JTEs again by taking
the slow path.

Contentions between BTB and JT entries. Since JTEs
have higher priority than BTB entries, cold JTEs might
occupy most of the BTB capacity to degrade overall
branch predictor performance. This problem is more
pronounced with small BTBs and many distinct byte-
codes used for a workload. In such cases the cost of
extra branch target misses for direct branches can out-
weigh the benefit of short-circuit dispatch. A practical
solution to the problem is to cap the maximum number
of JTE in the BTB at any given time. We implement and
evaluate this solution with a small BTB in Section VI-C.

Application to high-end processors. While SCD is also
applicable to high-end processors, its benefits are most
pronounced on low-end processors, where JIT is not
practical. A typical single-board computer features a
single core running at tens to low hundreds of MHz
with memory size ranging from KBs to low hundreds
of MBs. In such a resource-constrained environment
JIT is not a viable option. Besides, the effectiveness of
JIT depends highly on the existence of a handful of
hot methods dominating total execution time, which
may not be the case in real workloads [30, 31]. Unlike
JIT, SCD is applicable to low-end processors and to
workloads without hotspots.
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Simulator FPGA
ISA 64-bit Alpha 64-bit RISC-V v2
Architecture Single-Issue In-Order, 1GHz Single-Issue In-Order, 50MHz (Synthesized)
Pipeline Fetch1/Fetch2/Decode/Execute (4 stages) Fetch/Decode/Execute/Memory/Writeback (5 stages)

Branch Predictor

Tournament predictor 32B predictor
(512-entry for global and 128-entry for local) (128-entry gshare)
256-entry, 2-way BTB with RR replacement policy 62-entry, fully-associative BTB with LRU replacement policy
8-entry return address stack 2-entry return address stack
3-cycle branch miss penalty 2-cycle branch miss penalty

Caches

16KB, 2-way, 2-cycle L1 I-cache 16KB, 4-way, 1-cycle L1 I-cache
32KB, 4-way, 2-cycle L1 D-cache 16KB, 4-way, 1-cycle L1 D-cache
10-entry I-TLB, 10-entry D-TLB 8-entry I-TLB, 8-entry D-TLB
64B block size with LRU replacement policy 64B block size with LRU replacement policy

Memory 512MB, DDR3-1600, 2 rank, tCL/tRCD/tRP = 11/11/11 1GB, DDR3-1066, 1 rank, tCL/tRCD/tRP = 7/7/7
Workloads Lua-5.3.0, JavaScript (SpiderMonkey-17) Lua-5.3.0

Table II: Architectural parameters

Input script Input parameter DescriptionSimulator FPGA
binary-trees2 12 Allocate and deallocate many binary trees
fannkuch−redux 9 11 Indexed-access to tiny integer-sequence
k−nucleotide 250,000 2,500,000 Repeatedly update hashtables and k-nucleotide strings
mandelbrot 250 4,000 Generate Mandelbrot set portable bitmap file
n−body 500,000 5,000,000 Double-precision N-body simulation
spectral−norm 500 3,000 Eigenvalue using the power method
n−sieve 7 8 Count the prime numbers from 2 to M (Sieve of Eratosthenes algorithm)
random 300,000 600,000 Generate random number
fibo 12 32 Calculate Fibonacci number
ackermann 7 10 Use of the Ackermann function to provide a benchmark for computer performance
pidigits 500 6,000 Streaming arbitrary-precision arithmetic

Table III: Benchmarks

V. Experimental Setup

We use both a cycle-level simulator and FPGAs to
evaluate SCD on embedded processors. For simulation
we extend gem5 [32], and the architectural parameters
are summarized in Table II. We use the MinorCPU
processor model included in gem5 and take most of
architectural parameters from ARM Cortex-A5 [33], a
popular embedded application processor. We also im-
plement the VBBI [9] predictor and jump threading [8]
for comparison, which represent the state-of-the-art
hardware and software techniques, respectively.

For FPGA emulation we have written a fully syn-
thesizable RTL model for SCD, to demonstrate its
ISA independence and effectiveness with large inputs
(executing over 2.29 trillion instructions in total). Our
model is based on a open-source 64-bit RISC-V v2
Rocket core [34] written in Chisel language, whose
parameters are also summarized in Table II. This model
is compiled into Verilog RTL, which is then synthesized
for FPGA emulation and area/power estimation. Xilinx
ZC706 FPGAs are used for execution. We use the
default RISC-V/Newlib version. We only use the Lua
interpreter for FPGA emulation since we fail to build a

2We use the same small input for both the simulator and the FPGA
due to a system failure with a large input on FPGA.

SpiderMonkey binary due to missing libraries on RISC-
V/Newlib.

We synthesize the same RTL model using Synopsys
Design Compiler (Version B-2008.09-SP5-1) to report an
realistic estimation of area and power. We use 5 TSMC
CLN40G technology libraries at a 40nm technology
node, which are a 9-track standard cell library (SC9)
and 4 SRAM libraries generated by ARM Artisan mem-
ory compilers. A standard cell library for most-typical
corner is chosen (rvt tt typical max 0p90v 25c).
SRAM libraries of tag and data arrays of I- and D-
caches are generated by high density 1-port regfile,
high density 1-port SRAM and high speed 2-port
regfile memory compilers.

As for workloads we experiment with the following
two popular open-source interpreters: Lua-5.3.0 [7] and
SpiderMonkey-17.0 [29]. Both script interpreters are
compiled with gcc -O3, and we turn off garbage collec-
tion to not disturb the mutator (main) code. Lua has 47
distinct bytecodes and the dispatch loop consists of 35
native instructions. SpiderMonkey is written in C++.
We turn off the JIT compiler to run in the interpreter
mode. It has 229 distinct bytecodes, and the dispatch
loop takes 29 native instructions. We implement cus-
tom jump threaded versions for both interpreters, for
which we preserve the (almost) same code layout for
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Figure 7: Overall speedups for Lua and JavaScript interpreters (the higher, the better)
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Figure 8: Normalized dynamic instruction count (the lower, the better)

non-dispatcher code. In this way, we can compare the
performance impact of different dispatching schemes
in a fair manner.

We initially take the same set of 11 scripts from
recent work [19], but end up replacing four of them
for the following reasons. The replaced benchmarks
are either not working on SpiderMonkey (fasta and
meteor) or Lua (reverse−complement) or spending most
of the time on native library code rather than bytecodes
(regex−dna). Instead, four new benchmarks, n−sieve,
random, fibo, and ackermann, are taken from Computer
Language Benchmarks Game [35], where the 11 bench-
marks in [19] originate from. We run all benchmarks
to completion with inputs summarized in Table III and
measure the cycle count from the beginning and the
end of the interpreter loop.

VI. Evaluation

A. Overall Speedups

1) Speedups on Simulator: Figure 7 shows the over-
all performance speedups of SCD, along with jump
threading [8] and VBBI [9], normalized to the out-of-
the-box baseline. SCD achieves a geomean speedup of

19.9% and 14.1% for Lua and SpiderMonkey, respec-
tively, with maximum speedups of 38.4% and 37.2%.
This compares favorably to the other techniques with
−1.6% and 7.3% speedups for jump threading, and
8.8% and 5.3% for VBBI.

These performance gains with SCD are mainly at-
tributed to the following two factors. First, as Fig-
ure 8 shows, the normalized total dynamic instruction
counts of SCD are reduced by 10.2% and 9.6% on
average for Lua and SpiderMonkey, respectively. Fur-
thermore, the branch misprediction rates, represented
in misses in kilo-instructions (MPKI), are also reduced
by 70.6% and 28.1% (Figure 9). We will provide more
detailed discussion for the two interpreters in the
following.
Lua. VBBI and SCD achieve geomean speedups of
8.8% and 19.9% with maximum speedups of 16.8%
and 38.4% for mandelbrot, respectively. While both have
comparable branch miss prediction rates and instruc-
tion cache miss rates (shown in Figure 10), SCD has
significantly lower instruction count. However, jump
threading shows 2% worse performance than baseline
as the instruction cache miss rate increases from 0.28
MPKI (baseline) to 4.80 MPKI (jump threading). The
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Figure 9: Branch misprediction rate in misses per kilo-instructions (MPKI) (the lower, the better)
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Figure 10: Instruction cache miss rates in misses per kilo-instructions (MPKI) (the lower, the better)

branch misprediction rates are decreased for all three
schemes by 70.5%, 77.5%, and 24.4% for SCD, VBBI,
and jump threading, respectively.
SpiderMonkey. VBBI and SCD achieve geomean
speedups of 5.3% and 14.1%, respectively, with maxi-
mum speedups of 14.6% and 37.2% for fannkuch-redux.
Like Lua the primary source of improvement of SCD
over VBBI is a lower dynamic instruction count. Jump
threading achieves a geomean speedup of 7.3% with
the maximum speedup of 18.7% for fannkuch-redux.
While instruction count and branch misprediction rate
are decreased by 13.8% and 4.4%, respectively, over
the baseline, jump threading increases the instruction
cache miss rate by 25.3%. Overall, the performance
gains of SpiderMonkey are lower than Lua partly due
to the existence of multiple paths to the dispatcher
code, and SCD is not applicable to all paths.

2) Speedups on FPGA: Table IV summarizes the cycle
count and instruction count of the Lua interpreter
running on FPGA. We compare three versions: the
baseline, jump threading, and SCD. Columns 8 and 10
represent a reduction ratio in instruction count over the
baseline with jump threading and SCD, respectively.
Columns 9 and 11 represent the speedups over the

baseline, respectively. SCD achieves geomean speedup
of 12.0% with maximum 22.7% for mandelbrot. SCD
reduces instruction count by 10.4% on average over the
baseline, which is comparable to the simulator results.

Jump threading shows a negligible geomean
speedup of 0.01% on FPGA with a maximum speedup
of 7.5%. It reduces instruction count by 4.8% on av-
erage with a maximum of 5.9%. For n−sieve, jump
threading experiences an 11.1% slowdown. This is
likely caused by increased instruction cache misses as
we have discussed in Section VI-A1.

B. Area and Energy Consumption

Table V reports the area and power estimation of
SCD implemented on a RISC-V Rocket Core. The
target frequency is 500 MHz, and both the baseline
and SCD satisfy this constraint. With SCD, the total
area and power are increased by 0.72% and 1.09%,
respectively. Combined with speedup numbers in Sec-
tion VI-A2, these numbers translate to a 24.2% im-
provement in energy-delay product (EDP). According
to the area/power breakdown, the BTB accounts for
˜3% and ˜7% of total area and power, respectively,
which is increased by 21.6% and 11.7% with SCD.
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Baseline Jump Threading SCD Jump Thr./Baseline SCD/Baseline

Benchmark Inst. Cycle Inst. Cycle Inst. Cycle Inst. Speedup Inst. SpeedupCount Count Count Count Count Count Savings Savings
binary−trees 2.4B 3.8B 2.3B 3.6B 2.2B 3.4B 5.39% 4.33% 9.06% 10.43%
fannkuch−redux 595.4B 737.5B 565.9B 796.3B 534.1B 631.5B 5.22% -7.38% 11.48% 16.78%
k−nucleotide 88.7B 155.3B 85.4B 159.0B 82.4B 142.9B 3.92% -2.30% 7.69% 8.67%
mandelbrot 218.3B 263.0B 210.5B 249.6B 185.1B 214.4B 3.69% 5.37% 17.95% 22.67%
n−body 267.4B 341.2B 260.1B 345.4B 246.1B 313.1B 2.77% -1.21% 8.65% 8.97%
spectral−norm 507.2B 711.2B 488.1B 702.3B 461.1B 627.6B 3.91% 1.27% 10.00% 13.87%
n−sieve 4.0B 5.4B 3.8B 6.1B 3.6B 4.9B 6.27% -11.13% 10.95% 12.03%
random 0.8B 1.1B 0.8B 1.1B 0.7B 1.0B 7.21% 3.97% 11.92% 13.01%
fibo 3.5B 4.8B 3.3B 4.5B 3.2B 4.3B 7.49% 5.93% 10.56% 11.48%
ackermann 23.4B 34.5B 22.3B 32.8B 21.3B 31.6B 5.02% 5.32% 10.09% 9.30%
pidigits 578.2B 796.3B 564.3B 816.2B 541.2B 750.2B 2.46% -2.45% 6.83% 6.14%

GEOMEAN 4.84% 0.01% 10.44% 12.04%

Table IV: Cycle count and instruction count of Lua interpreter using RISC-V Rocket Core on FPGA

Baseline SCD
Module Hierarchy Area (mm2) Power (mW) Area (mm2) Power (mW)
Top 0.690 100.0% 18.46 100.0% 0.695 100.0% 18.66 100.0%

- Tile 0.649 94.0% 14.66 79.4% 0.654 94.0% 14.86 79.6%
| - Core 0.044 6.3% 2.86 15.5% 0.044 6.3% 2.87 15.4%
| | - CSR 0.013 1.9% 1.07 5.8% 0.013 1.9% 1.07 5.7%
| | - Div 0.006 0.9% 0.17 0.9% 0.006 0.9% 0.17 0.9%
| - FPU 0.087 12.7% 3.19 17.3% 0.088 12.7% 3.21 17.2%
| - ICache 0.251 36.4% 3.58 19.4% 0.255 36.7% 3.75 20.1%
| | - BTB 0.019 2.7% 1.40 7.6% 0.023 3.3% 1.56 8.4%
| | - Array 0.229 33.2% 1.91 10.3% 0.229 32.9% 1.91 10.2%
| | - ITLB 0.003 0.5% 0.28 1.5% 0.003 0.5% 0.27 1.5%
| - DCache 0.248 36.0% 3.70 20.0% 0.248 35.7% 3.70 19.8%
| - Uncore 0.018 2.6% 1.34 7.2% 0.018 2.6% 1.33 7.2%
| | - HTIF 0.006 0.8% 0.41 2.2% 0.006 0.8% 0.41 2.2%
| | - Memsys/L2Hub 0.012 1.8% 0.92 5.0% 0.012 1.8% 0.92 4.9%
- Wrapping 0.041 6.0% 3.80 20.6% 0.042 6.0% 3.80 20.4%

Table V: Hardware overhead breakdown (area, power)

Overall, the BTB module is responsible for an increase
of 0.59% and 0.90% for area and power by integrating
SCD. According to the timing reports SCD does not
affect the critical timing path of the original design as
the critical path is in the FPU module before and after
integrating SCD. Note that, we have not performed
any microarchitectural optimization, so there is still
significant room for improvement with this result.

C. Sensitivity Study

1) Sensitivity to BTB size and maximum cap on the
number of JTEs: Since the software jump table is over-
laid onto the BTB, normal BTB entries and jump table
entries (JTEs) compete for the BTB space. Our default
policy gives a higher priority to JTEs, and regular
directed branches can be penalized for this. In the
worst case the cost of extra branch target misses for
direct branches can outweigh the benefit of short-
circuit dispatch. This problem is likely to be more
pronounced for small BTBs.

Therefore, we perform a sensitivity study with vary-
ing BTB capacity. Figure 11 (a) and (b) represent the
result of the sensitivity study with varying BTB size

for Lua and SpiderMonkey, respectively. In the graphs
X-axis represents the number of BTB size. Y-axis repre-
sents speedups of SCD over baseline for each BTB size.
While the performance benefit decreases with smaller
BTBs, SCD still significantly outperforms the baseline
even with a small BTB size (64).

Figure 11 (c) and (d) show the effects of capping the
maximum number of JTEs in the BTB at any given
time with the smallest BTB size. X-axis represents the
maximum cap on the number of JTEs. While capping
brings only modest speedups compared to the baseline
(denoted by “∞”), some programs get significant boost
of performance (e.g., n−sieve). We will leave selecting
an optimal cap value for future work.

2) Performance on a higher-end core: We evaluate SCD
on a higher-performance in-order core based on ARM
Cortex-A8 [33]. We adopt a dual-issue pipeline and
increase the size of L1 I-cache to 32KB with 4 ways,
L2 cache to 256KB, and BTB to 512 entries. SCD still
achieves comparable performance on this core with
geomean speedups of 17.6% and 15.2% for Lua and
SpiderMonkey, respectively, and reduced instruction
counts by 10.2% and 9.2%.
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Figure 11: Sensitivity of overall speedups to varying BTB size (a) for Lua and (b) SpiderMonkey. Sensitivity to
the the maximum cap imposed on the number of JTEs (c) for Lua and (d) SpiderMonkey

VII. RelatedWork
Hardware-based techniques. Indirect branches are
heavily used in modern high-level programming lan-
guages for function pointers, switch-type statements,
etc. Naturally, there are a number of attempts to opti-
mize them using specialized hardware. ARM Thumb2
ISA includes complex table branch instructions, such
as tbh and tbb, which combine jump table lookup,
target address calculation, and jump into a single
instruction. However, these instructions only reduce
instruction count but do not eliminate redundant com-
putation, hence yielding limited speedups. According
to ARM’s software optimization guides [20], these
instructions take at least 6 cycles (i.e., equivalent to
6 instruction slots on a single-issue processor) be-
fore fetching the correct target instruction. Kaeli and
Emma [28] propose Case Block Table (CBT) to optimize
switch-type statements, which is perhaps the most
similar in spirit with SCD, but with very different
interface and organization. Their ISA extension marks
only the beginning and end of a switch statement and
rely on a very specific pattern of generated code to
identify a key-target address pair, which limits appli-
cability. Furthermore, CBT is an auxiliary hardware
table without overlaying on the BTB, incurring higher
cost than SCD. Finally, their proposal lacks realistic
evaluation and many design details.

Another avenue of proposals aim to improve in-
direct branch prediction in general. The conventional
branch target buffer (BTB) [36] is not effective for an
indirect branch with multiple targets. There are many
proposals to address this [9, 10, 11, 12, 13]. Chang
et al. [11] propose history-based Tagged Target Cache
(TTC), which stores multiple targets in a target cache
for predicting the indirect jumps. Driesen et al. [12, 13]
propose Cascaded Predictor, a hybrid predictor com-
bining a simple first-stage predictor with a complex
second-stage one. VPC prediction [10] exploits the ex-
isting direct predictor for predicting indirect branches.
Recently, Farooq el al. [9] propose VBBI, which demon-
strates the effectiveness of value correlation for indirect
branches. Seznec and Michaud [37] propose the IT-
TAGE predictor, which is the most accurate branch pre-
dictor and relies on multiple predictor tables indexed
with global history. However, these techniques mostly
target high-end processors with high misprediction
cost and are less effective on thin embedded processors
(as discussed in Section II). Instead, SCD not only
improves the accuracy of prediction but also eliminates
redundant computation, to significantly speed up VM
interpreters on embedded systems.
Software-based techniques. There are many existing
proposals to improve interpreter performance. Hooger-
brugge et al. [38] propose software pipelining for inter-
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preters to reduce dispatch branch cost on a VLIW pro-
cessor. However, these techniques require a large num-
ber of registers, not suitable in the embedded domain.
Berndl et al. [15] propose context threading, which
completely eliminates indirect branches from the dis-
patch of virtual machine instructions via JIT compila-
tion, requiring a significant number of CPU cycles. Jia
et al. [39] propose Direct TPC Table (DTT), a program
structure-aware indirect branch handling technique re-
placing target calculation with a table lookup in soft-
ware. However, the software table lookup itself takes
a significant fraction of total execution time in the VM
interpreter. Another class of techniques reduce the cost
of indirect branches via code transformation, includ-
ing bytecode replication and superinstructions [16],
Compiler-guided Value Pattern (CVP) [18], techniques
by Mccandless and Gregg [17], and so on. These tech-
niques still do not reduce the redundant computation
in the dispatcher code, hence yielding limited gains for
VM interpreters on embedded processors.

VIII. Conclusion
This paper proposes Short-Circuit Dispatch (SCD),

a low-cost hardware-based technique to accelerate the
VM interpreter on embedded platforms. The key idea
of SCD is to overlay the software-created bytecode
jump table on a branch target buffer (BTB), realiz-
ing efficient memoization for eliminating redundant
computation in the dispatcher code. Our cycle-level
simulation with gem5 demonstrates the effectiveness
of SCD with geomean speedups of 19.9% and 14.1%
for two production-grade script interpreters for Lua
and JavaScript, respectively. Moreover, our fully syn-
thesizable RTL design based on a RISC-V embedded
processor shows that SCD improves the EDP of the Lua
interpreter by 24.2%, while increasing the chip area by
only 0.72% at a 40nm technology node.
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Fetch Energy in Multi-issue Processors,” ACM Trans. Archit.
Code Optim., vol. 10, no. 4, Dec. 2013.
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