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Abstract—Of late, deep neural networks have become ubiqui-
tous in mobile applications. As mobile devices generally require
immediate response while maintaining user privacy, the demand
for on-device machine learning technology is on the increase.
Nevertheless, mobile devices suffer from restricted hardware
resources, whereas deep neural networks involve considerable
computation and communication. Therefore, the implementation
of a neural-network specialized hardware accelerator, generally
called neural processing unit (NPU), has started to gain attention
for the mobile application processor (AP). However, NPUs for
commercial mobile AP face two challenges that are difficult to
realize simultaneously: execution of a wide range of applications
and efficient performance.

In this paper, we propose a flexible but efficient NPU archi-
tecture for a Samsung flagship mobile system-on-chip (SoC). To
implement an efficient NPU, we design an energy-efficient inner-
product engine that utilizes the input feature map sparsity. We
propose a re-configurable MAC array to enhance the flexibility of
the proposed NPU, dynamic internal memory port assignment to
maximize on-chip memory bandwidth utilization, and efficient
architecture to support mixed-precision arithmetic. We imple-
ment the proposed NPU using the Samsung 5nm library. Our
silicon measurement experiments demonstrate that the proposed
NPU achieves 290.7 FPS and 13.6 TOPS/W, when executing an
8-bit quantized Inception-v3 model [1] with a single NPU core.
In addition, we analyze the proposed zero-skipping architecture
in detail. Finally, we present the findings and lessons learned
when implementing the commercial mobile NPU and interesting
avenues for future work.

Index Terms—neural processing unit, neural network, acceler-
ator, sparsity, mixed-precision, re-configurable

I. INTRODUCTION

With the success of deep-learning, applications relying on

deep neural networks, such as speech recognition (e.g., Bixby),

vision task (e.g., Bixby vision), and personalization, have

become popular in mobile devices. As mobile applications

This paper is part of the Industry Track of ISCA 2021’s program.

generally require real-time response, the always-on feature,

and privacy preservation, there has been an explosion in the

demand for on-device machine learning technology. However,

mobile devices suffer from restricted power budget, memory

bandwidth, and computing resources, whereas deep-learning

applications necessitate substantial computations and memory

communication to execute deep neural networks. Thus, it is

challenging to execute deep neural networks efficiently using

general purpose mobile processors, which are not optimized

for neural networks. Moreover, this problem worsens as the

neural networks become deeper to achieve higher accuracy,

which is the trend in recent deep learning research [2, 3, 4, 5].

Recently, a dedicated hardware accelerator for neural net-

works called neural processing unit (NPU), has been exten-

sively studied for the efficient execution of neural networks [6,

7, 8, 9, 10]. For neural network acceleration, neural network

characteristics, such as the dataflow [7, 11], sparsity [8, 12],

and quantization [13, 14], are mainly utilized. Quantization

methods [15] reduce the data bit-width and enable the hard-

ware accelerator to accommodate more computational as well

as memory resources within the same chip area. Utilizing

the sparsity, the NPU can improve the performance and/or

energy efficiency by skipping ineffectual computations caused

by zero values [12]. In addition, the application of pruning

techniques [16], which increase the portion of zero weights

by sacrificing the acceptable accuracy, can maximize sparsity

gain. By sacrificing the acceptable accuracy, the NPU can

accelerate applications requiring immediate response but are

less sensitive to the accuracy, such as camera filters for real-

time video communication.

Unfortunately, a commercial mobile application processor

(AP) is required to execute a comprehensive range of neu-

ral networks while satisfying various user requirements. For

instance, two different types of applications might exist in a
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mobile device, where the one is accuracy-sensitive and the

other is throughput-sensitive. By adopting low-precision arith-

metic units alone, throughput-sensitive applications in which

the throughput requirement is stringent but minor accuracy loss

is acceptable can be optimized. However, the performance and

quality of an accelerator with only low-precision arithmetic

units might degrade when executing general applications,

and at the worst, an accuracy-sensitive application might fail

to meet the constraint. In addition, as mobile applications

are provided by various developers, the application of an

optimization method might be restricted because it requires

extra effort during the design stage (e.g., pruning). Thus, it is

critical to achieve both flexibility and efficiency in the NPU

architecture for a commercial mobile AP.

In this paper, we propose an NPU that aims to achieve both

efficiency and flexibility for a commercial mobile AP. The

architecture of the proposed NPU is scalable, with three cores

including 2k 8-bit MACs each. The novel architecture and

methodologies used to achieve flexibility while executing the

neural network efficiently in the proposed NPU are summa-

rized below.

Efforts to realize efficiency:

• Design of an energy-efficient basic computation unit:
Based on our case study, which compares the MAC unit

and inner-product engine under the Samsung 5nm library,

we design an energy-efficient inner-product engine and

utilize it as the basic computation unit.

• Utilization of the input feature map sparsity. The

proposed sparsity unit takes advantages of the natural

sparsity of the input feature map induced by nonlinear

functions returning zero values (e.g., ReLU). Based on

our observation of a channel-wise pattern, we apply an

efficient sparsity unit for the inner-product engine.

Efforts to achieve flexibility:

• Re-configurable MAC array. We apply a re-

configurable MAC array that can change the input

and output channel sizes of the inner-product engine.

The proposed NPU maintains high utilization in various

types of layers by suitably re-configuring the data path

of the MAC array.

• Dynamic port assignment for complete utilization of
the on-chip memory bandwidth. As the required band-

width for the input feature map, weight, and partial sum

vary among the layers, we apply dynamic port assignment

to completely utilize the on-chip memory bandwidth. For

instance, to accelerate MobileNet-v2, where the input

feature map bandwidth is a performance bottleneck, the

proposed dynamic port is assigned to the input feature

map for relieving the bandwidth bottleneck.

• Efficient mixed-precision support: The proposed NPU

adopts an optimized 8-bit integer unit for energy effi-

ciency; however, it can support 16-bit integer arithmetic

by consuming multiple cycles without an additional ac-

cumulator.

In addition, we present the lessons learned and promising

avenues for future work based on our considerable experience

in designing NPUs for a commercial mobile AP.

II. BACKGROUND

A. Energy-efficient NPU

Several approaches have been proposed for developing

energy efficient NPUs targeting the mobile environment. Eye-

riss [7] classified the conventional dataflows in DNN process-

ing based on the type of reused data, which are stationary

in the computing block for multiple cycles. By analyzing

dataflows, row-stationary dataflow as well as dedicated ac-

celerator architecture were suggested to improve the energy-

efficiency of DNN execution.

Quantization can be effectively exploited in NPU architec-

ture. As the quantization sensitivity varies in each network and

even in each layer, the optimal bit-widths after quantization

differ for each layer. To fully utilize advantage of quantiza-

tion, various NPUs supporting mixed-precision arithmetic have

been proposed. Stripes [17] used bitwise computing temporally

through a series of accumulations and bit-shift operations. On

the other hand, Bit fusion [18] proposed that a set of small

bit-width processing units which construct an arithmetic unit

for larger bit-widths spatially.

Another method to utilize value characteristics during DNN

computation involves the skipping of ineffective operations

such as multiplications using either zero input feature map

or weights. As the performance improvements through zero-

skipping are dependent on the proportion of zero data, several

pruning methods have been proposed to increase the num-

ber of zero weights [19, 20]. Such weight pruning methods

necessitate retraining to complement the accuracy reduction.

However, an NPU for a commercial SoC may be used by

third parties with in-house neural network models, rendering

the adoption of weight pruning in general NPU architecture

inappropriate. In terms of the feature map sparsity, ReLU,

which is the most popular nonlinear activation function, gen-

erates numerous zero input feature maps during processing,

and a mobile SoC can exploit the input feature map sparsity to

improve the efficiency with adequate hardware support [8, 21].

Although the energy-efficiency of the NPU can be enhanced

by exploiting the data sparsity, it complicates DNN execution

by replacing the fixed processing order by variable patterns

that can be changed depending on the zero-data distribution.

For example, the application of zero-skipping for both input

feature maps and weights would result in the under-utilization

of MACs due to the complex control, and render the NPU

performance more sensitive to the network characteristics [21].

Therefore, the tradeoff relationship between the data sparsity

and energy-efficiency should be explored in commercial mo-

bile NPUs.

B. Architecture requirements for DNN processing

DNN-based models have achieved remarkable performances

in various fields. These models have diverse shapes and

model parameters depending on their application and target

performance. Crucial model parameters such as the layer
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Fig. 1: (a) MAC-based computation engine and (b) adder-tree-

based inner-product engine.

depth, number of channels, feature/weight data volumes, and

connection patterns between layers could differ among the

layers. ResNet [22] introduced residual paths to alleviate

the vanishing-gradient problem that occurred during back-

propagation in previous models. MobileNet [23] suggested

a depthwise-separable convolution technique to effectively

reduce model size and operation count. Despite the diversity

among models, the principal operation in DNN processing is

the inner-product. In addition to the feed-forward network that

has gained importance of late as a transformer model, which

dominates in several language applications, convolution, which

is crucial in image processing applications, can be considered

as a type of inner-product with a data reusing scheme. In this

context, to support various DNN models in an energy-efficient

manner, the NPU architecture should be optimized to perform

inner-product-based operations.

Several studies, including [15, 24], have verified that the ex-

ploitation of fixed-point integer computing instead of the orig-

inal floating-point values can achieve similar accuracy in tradi-

tional models for image classification, such as AlexNet [25],

VGG [26], and MobileNet [23]. On the other hand, several

DNN models in more complex fields have exhibited consider-

able accuracy degradation when using an 8-bit integer system

(INT8). Hence, our mobile NPU aims to realize both efficiency

and flexibility.

III. MOTIVATIONS AND DESIGN STRATEGIES

In this section, we present our motivations and design

strategies for the proposed architecture.

A. Growing Overhead of the Clocking Elements

To accelerate a neural network without sacrificing the qual-

ity, various approaches, such as sparsity [19, 27], dynamic

voltage and frequency scaling (DVFS) [28], and dynamic

quantization [29, 30], have been proposed. These approaches

optimize neural-network execution during runtime by pro-

viding dynamic control at the cost of additional overhead,

particularly the clocking elements. The cost of a clocking

element (e.g., flip-flop) increases as the transistor-size reduces.

The performance or energy improvement realized through

additional features, accompanied by excessive control, may be

TABLE I: Energy consumption of the MAC-based compu-

tation engine and the adder-tree-based inner-product engine.

Each engine has 16 multipliers with 8-bit input data

Component MAC Adder-tree

Register (32-bit) 39.2mJ 4.9mJ
Multiplier (8-bit) 71.3mJ 71.3mJ

Adder (16-bit) 52.5mJ 17.5mJ

Total 163.0mJ 93.7mJ

diluted due to the overhead of the clocking elements. Thus,

we focus on achieving considerable performance improvement

while minimizing the control overhead. To realize this objec-

tive, we propose sparsity-aware architecture, and analyze the

tradeoff between the hardware overhead and performance of

the proposed sparsity-aware architecture variants. The details

are presented in Sections V-A and VII-A.

With the increase in the clocking element overhead, the

demand for reducing the number of accumulators increases

as well. Figure 1 illustrates the adder-tree-based inner-product

engine and the MAC-based computation engine. Each multi-

plier of the MAC engine has its own accumulator that includes

flip-flops (Figure 1a), whereas the multipliers in the inner-

product engine share an accumulator (Figure 1b). Although the

independent accumulators assigned to each multiplier render

the MAC engine more flexible, additional area and power

overhead compared to the inner-product engine are caused.

We implement an efficient inner-product engine as our basic

computation unit and propose additional features to achieve

flexibility with the inner-product engine. Table I compares

the energy consumption between the proposed inner-product

engine and the MAC engine, where each engine has the same

number of multipliers (e.g., 16). Both are implemented using

the Samsung 5nm library. As shown in the table, the energy

consumption of the proposed inner-product engine is reduced

by 42.5%, compared to the MAC-based engine.

B. Low Resource Utilization

As NPUs for mobile devices execute a wide range of appli-

cations, the various layers are required to run efficiently. When

executing a neural network using an inner-product engine, each

layer is divided into 1D tensors, which are assigned as input

to the computation unit. Computational resource utilization

depends on a combination of the hardware configuration

(e.g., adder-tree size) and tensor shape. Thus, the strategy

for mapping the tensors to the computation units is the key

for realizing high resource utilization. However, a plain inner-

product engine may suffer from low utilization due to lack of

flexibility (e.g., static adder-tree size) when executing various

tensor shapes. To maximize the resource utilization of the

proposed architecture under various tensors, we propose a re-

configurable MAC array, which enables the dynamic changing

of the tensor mapping strategy during runtime. Thereby, a

compromise between the efficiency and flexibility is possible

in the proposed architecture, as described in Section V-B.



ct ou
t

Subtile

Tile

Input Feature Map Weights Output Feature Map

Fig. 2: Work distribution model of the convolutional layer.

Even if we find an excellent strategy for mapping the tensors

to the computation unit, the NPU might suffer from utilization

degradation if the bandwidth between the computation unit

and memory is insufficient. When executing neural networks,

the computation unit requires (or generates) different types of

data, such as the input feature map, weight, and output feature

map, and communicates with the memory. In case each data

type has a designated data fetcher and/or on-chip memory,

the maximum bandwidth for each data is fixed during design,

where their sum is the total on-chip bandwidth. In this case,

even if certain data traffic are dominant and the ports for the

other data types are idle, each data transfer only occurs through

the designated port. As a result, the overall memory bandwidth

is wasted. To completely utilize the overall memory bandwidth

during runtime, we propose a shared on-chip memory and

dynamic data fetcher, which can fetch arbitrary data types,

as detailed in Section V-C.

C. Mixed-Precision Requirement
Commercial mobile devices are required to run a compre-

hensive range of applications while satisfying various require-

ments. However, it is difficult to simultaneously satisfy some

of the representative requirements such as high-throughput

and high-accuracy. For instance, although quantization is

promising for achieving high throughput using restricted re-

sources, it is often accompanied by accuracy reduction. Thus,

there is a growing demand for supporting mixed-precision

arithmetic to satisfy the various requirements. Based on the

observation that 8-bit integer arithmetic is sufficient for most

mobile applications, we optimize the proposed NPU for 8-

bit integer arithmetic. In addition, to cope with applications

requiring high accuracy, the proposed NPU supports 16-bit

integer arithmetic using multiple cycles without an additional

accumulator, as described in Section V-D.

IV. ARCHITECTURE

A. Work Distribution Model
We describe our work distribution model using an example,

where a single NPU engine computes the convolutional layer

(Figure 2). The proposed NPU computes an entire layer

by iteratively performing partial computations. The overall

execution flow of the proposed NPU is summarized as follows:

1) Given a convolutional layer, we first divide the output

feature map along a channel (ctout in Figure 2) and the

spatial dimension to generate a partial computation unit,

which we call tile. Each tile can be assigned to a single

NPU engine or a set of NPU engines.

2) Similarly, the computation in a tile is divided into

multiple subsets called subtiles, where the computation

result of each subtile is the partial sum of the same

output feature map. Each subtile includes chunks of the

input feature map and weights divided along the input

channel dimension (cstin in Figure 2)

3) The inputs assigned to each subtile are further divided

into 1D tensors. To process a subtile, the NPU engine

generates a partial sum tensor (e.g., the partial output

feature map tensor in Figure 2 sized 1×1×ctout), using

an input feature map tensor (e.g., the input feature map

tensor in Figure 2 sized 1×1×cstin) and the ctout weights

tensors (e.g., the weight tensors in Figure 2 sized 1×1×
cstin). The above process is repeated until all the weight

tensors are computed ( 1© in Figure 2), and the results

are accumulated to generate the final partial sum tensor.

Architectural parameters cstin and ctout are multiples of

16 and 64, respectively.

4) Step 3 is repeated until all the partial sum tensors are

computed ( 2© in Figure 2) to complete a subtile.

5) Steps 2–4 are repeated until all the subtiles are computed

( 3© in Figure 2) to complete a tile.

6) The proposed NPU iterates steps 2–5 until all the tiles

in the layer are completed. The generated output feature

map is then used as the input feature map for the next

layer.

B. Overall Architecture and Computation Process

The proposed NPU includes three cores. Figure 3 illustrates

the top-level core design. The core includes two engines

called NPUEs (e.g., NPUE 0 and NPUE 1); the engines are

each equipped with 1k MACs and share an on-chip scratch-

pad memory. The NPU controller orchestrates data transfer

between the on-chip scratchpad memory and an external

memory. The NPUE comprises a data fetcher, tensor unit,
and vector unit.

As we employ weight-stationary dataflow to maximize the

reuse of weights, in order to process each subtile, the weight
fetcher loads the associated weight tensors and then stores

them in a local buffer called weight buffer. During each cycle,

the IFM fetcher loads the associated input feature map tensors

from the scratchpad memory. Note that the loaded input feature

map tensor is stored as sparse data, which includes zero values.

In order to skip the ineffectual computations associated with

a zero input feature map, the sparsity unit generates a dense

tensor, which maximizes nonzero data through zero-skipping.

Further, the dense tensors are transferred to four 16×16 MAC

arrays (MAAs) for generating a partial sum tensor. The four
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communicate directly through the tensor unit output (e.g., to NPUE 1) and vector unit input (e.g., from NPUE 1) to implement

a re-configurable MAA.

MAAs receive the same input feature map tensor (e.g., the

input feature map tensor in Figure 2 sized 1 × 1 × cstin), and

each MAA generates a partial sum tensor divided along the

output channel dimension (e.g., the four small partial output

feature map tensors in Figure 2 sized 1 × 1 × ctout/4). After

the accumulation of each partial sum tensor, the result is

transmitted to the vector unit, which performs element-wise

operations such as nonlinear activation functions.

C. Data Fetcher

The data fetcher includes three static fetchers, the IFM
fetcher, weight fetcher, and PSUM fetcher, which handle the

input feature maps, weights, and partial sums, respectively.

Unlike a static fetcher that handles only a designated type

of data, the dynamic fetcher, referred to as the IFM/PSUM
fetcher, can load an arbitrary type of data from the input

feature map or partial sum. All the fetchers have their own

buffers, which are sufficiently large to avoid stall due to

scratchpad memory delay. Data are loaded through each

fetcher in parallel, with a bandwidth of 32 bytes each.

The IFM fetcher is connected to the scratchpad memory

through two 16-byte ports. As the proposed NPU utilizes

the input feature map sparsity, we set the IFM fetcher band-

width to twice the data quantity that the MAAs can process

per cycle to alleviate utilization drop. To load partial sums

with variable bit-width, the PSUM fetcher adopts a time-

multiplexing method. We assume that the input data is 8-

bit and the corresponding partial sum is 32-bit to cope with

the corner case during accumulation. In this case, the IFM

and weight fetchers can load 32 elements in a cycle (e.g.,

32×1 byte ×1 cycle). To load the corresponding partial sum,

which includes 32 4-byte data, the PSUM fetcher loads eight

elements per cycle and transfers them to the tensor unit. Two

or four cycles are required in total (e.g., 8×4 bytes ×2 fetchers

×2 cycles or 8× 4 bytes ×1 fetcher ×4 cycles). The weight
fetcher preloads the weights of the next subtile during the

computations in the current subtile, and the PSUM fetcher
preloads the partial sums of the next 1 × 1 × ctout partial

sum tensor during the computations in the current partial sum

tensor in order to overcome the load latency of the weight and

partial sum through double buffering.

D. Tensor Unit

Sparsity unit. To find the nonzero input feature map, and its

corresponding weight and partial sum, the sparsity controller
first generates nonzero bit flags, which store information on

whether each input feature map is zero. Based on our priority-

based searching mechanism, the sparsity unit then generates

appropriate dense data and transfers them to the MAAs. As

the input feature map is shared among the MAAs in the same

tensor unit (e.g., MAA0 to MAA3 in Figure 3), the sparsity

unit broadcasts the nonzero input feature map to the MAAs,

reducing data traffic. Note that the proposed NPU bypasses the

sparsity unit when executing the pooling layer. The proposed

zero-skipping mechanism is described in Section V-A.

MAC array (MAA). Figure 4 illustrates the architecture of

the proposed MAA. The tensor unit includes four MAAs, each

comprising 16 MUL columns. Each MUL column has 16 mul-

tipliers, and two sets including an adder-tree and accumulator

each (i.e., four 16x16 MAAs in total). In order to achieve

high throughput by reducing the required bandwidth from the

sparsity unit, the input feature map is shared across the MUL

columns (e.g., the arrow annotated as IFM sharing lane in

Figure 4). A set of horizontal MACs, which share an input fea-

ture map, is defined as a lane. During each cycle, each MAA

loads the same input feature map tensor (e.g., i ∈ R
1×1×16)
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the same input feature map.

as well as 16 weight tensors (e.g., w ∈ R
(1×1×16)×16), and

performs the inner-product to generate a partial sum tensor

(e.g., i ·w = p ∈ R
1×1×16).

The proposed MAA is re-configurable in order to achieve

better utilization and flexibility. Zero-skipping architectures

often suffer from load imbalance due to the differences in

the number of effectual computations among the computation

units, reducing the utilization. To alleviate the load imbalance

problem among lanes, a single MUL column equips two 16-

input adder-trees and accumulators in the proposed architec-

ture; each accumulates the partial sum for two different output

pixels (e.g., Adder-tree #0-#1 and Acc. #0-#1 in Figure 4). In

addition, the proposed architecture supports mixed-precision

efficiently. Using the MAA optimized for 8-bit arithmetic, the

proposed MAA can perform 16-bit operation by consuming

multiple cycles without an additional accumulator, as detailed

in Section V.

E. Vector Unit

The activation function unit receives the output tensors from

the tensor unit and performs vector-wise operations, such as

element-wise summation between the outputs from different

NPUEs. To compute the nonlinear activation functions, the

activation function unit also performs basic linear-algebra for

piece-wise linear approximation, aX + b, where X is the

output tensor from the tensor unit, and a and b are scalar

values. The proposed NPU can support activation functions

ranging from ReLU variants to the sigmoid using the auxiliary

arithmetic functions implemented in the vector unit. Each unit

in the activation function block (e.g., Block #1 to #16 in

Figure 3) is assigned to each output pixel and process the

computation in a cycle. Thus, to compute an output feature

map in which the size is greater than the number of blocks, the

activation function unit operates in a time-multiplexed manner.

For instance, 16 blocks in the activation function unit can

process 16 output pixels during a cycle, and four cycles are
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Fig. 5: Priority-based search algorithm for hardware friendly

zero-skipping: (a) Mechanism of the priority-based search

algorithm when there is no conflict. Lane-3 loads b0 as the

next nonzero input. (b) Conflict resolution of the priority-based

search algorithm since the values of lane-3 and lane-4 are zero.

Assuming that conflict occurs in b0, lane-4 loads b0 as the

next nonzero input because it precedes lane-3 in terms of the

priority (e.g., the priority of lane-4 is one and that of lane-3

is two). Lane-3 loads c0 as the next nonzero input.

consumed when an output feature map sized 1 × 1 × 64 is

received.

As the proposed activation function unit generally receives a

1D output feature map tensor divided along the channel dimen-

sion, channel-wise quantization [31] can be applied without

reshaping the tensors (e.g., Quantization unit in Figure 3).

To reduce energy consumption, the proposed NPU bypasses

the activation function unit and quantization unit when they

receive the partial sum of the output feature map. The vector

unit buffers store either the partial sums or final results,

and transfer data to the scratchpad memory using double-

buffering.

V. KEY FEATURES

A. Sparsity Utilization

We employ two methods, intra-lane search and inter-lane
search to skip the zero values in the input feature map. Intra-

lane search finds the nonzero values assigned to the following

few cycles. Applying intra-lane search, each lane can perform

effectual computations until all the assigned nonzero feature

maps are consumed. However, as the MUL columns in the

MAA generate partial sums for the same output feature map,

the MAA proceeds to the next accumulation only after all the

lanes in the MAA consume their inputs. Thus, the performance

gain achieved by the zero-skipping method relying only on

intra-lane search varies based on the number of nonzero values

in each lane, and the total execution time of an MAA is

determined by the straggler lane. To mitigate this problem,

we apply inter-lane search additionally, which expands the

search range and steals the nonzero input feature map from

the neighboring lane.

The proposed inter-lane search is inspired by the zero-

weight skipping proposed in [32]. Unlike skipping zero



64

H o
ut

Win

H i
n C o

ut

Wout

Input Feature Map Weights Output Feature Map

Tile
(NPUE 0)

Tile
(NPUE 1)

H i
n

Win

64
C o

ut

Tile
(NPUE 0)

Tile
(NPUE 1)

H o
ut

Wout

Input Feature Map Weights Output Feature Map

64
C o

ut

Wout
H o

ut

Input Feature Map Weights

Win

H i
n

Output Feature Map

(a) Config A (b) Config B (c) Config C

Fig. 6: Three configurations of the two NPUEs through which a tile or subtile is assigned: (a) config A: Two groups of subtiles

in the same tile, (b) config B: two independent tiles in the spatial dimension, and (c) config C: two independent tiles in the

channel dimension. The red, green, and brown tensors are assigned to NPUE 0, NPUE 1, and are common to both NPUEs,

respectively.

weights [32], we aim to utilize the input feature map spar-

sity because of the commercial mobile-device environment.

Skipping zeros in weights is beneficial when accompanied

by pruning; however, many models running on commercial

mobile devices are provided by third-party developers without

pruning. Thus, to take advantage of the sparsity in practical

usage, the proposed methods utilize the natural sparsity in the

input feature map generated by nonlinear functions, such as

ReLU, which return zero for any negative input value.

As the distribution pattern of a nonzero feature map is

unpredictable before execution, the sparsity unit has to search

for nonzero values during runtime. We implement a specific

hardware unit, which finds the nonzero values of each lane

within the search window. Unfortunately, there are overlaps

among the search windows when performing inter-lane search,

rendering hardware-based searching complicated. To tackle

this problem, we propose a priority-based search algorithm,

which enables the skipping of a zero input feature map in a

hardware-friendly manner.

We describe the proposed priority-based search algorithm

using an example in which the intra- as well as inter-lane

search window size is two (Figure 5). Figure 5a illustrates the

working of the proposed priority-based search algorithm when

there is no conflict. Each lane has its own search window for

which the size is intra-lane search window size × inter-lane
search window size (e.g., 2×2 blue box in Figure 5a). If the

next value for lane-3 is zero (the zero value at coordinate (3,0)
in Figure 5a), the search order is as follows: coordinate (2,1),
(3,1), (2,2) and (3,2). More precisely, assume that the time

step is t and lane-x is given. If the value at position (x, t)
is zero, where the coordinate represents (lane number, time
step), the search order of the proposed method is (x-1, t+1),
(x, t+1), (x-1, t+2) and (x, t+2). Following the search order,

the sparsity controller finds the first nonzero data for each lane

and utilizes it as the next data (e.g., lane-3 utilizes b0 as the

next data instead of zero as shown in Figure 5a).

Figure 5b illustrates the working of the proposed priority-

based search algorithm when conflict occurs. Assume that the

next values of lane-3 and lane-4 are zero (the zero values

at coordinate (3,0) and (4,0) in Figure 5b). When searching

for nonzero data, conflict occurs because the first nonzero

data in lane-3 as well as lane-4 is b0 (denoted by the gray

box in Figure 5b). In case of conflict, the lane with higher

priority (i.e., the lane preceding in the searching order) owns

the conflicted value. b0 is the second value in the search

window of lane-3 but the first value in that of lane-4. Thus,

lane-4 steals the nonzero b0, which had been assigned to its

neighbor (i.e., inter-lane search). Lane-3 owns the nonzero c0,

which had been assigned to the next cycle, instead of b0 (i.e.,

intra-lane search).

Inter-lane search requires extra MUX circuits to handle the

overlap between search windows and the overhead increases

with the increase in the window size of inter-lane search. We

optimized the performance and cost of the proposed sparsity

unit based on our experimental results. Detailed analysis of

the performance and cost under various intra- and inter-lane

window sizes is presented in Section VII-A.

B. Re-configurable MAC Arrays

To further improve the MAC utilization of the proposed

inner-product engine, we propose re-configurable MAC arrays.

By dynamically controlling the connection between a tensor

unit and vector unit, we implement re-configurable MAC

arrays. During execution, the proposed NPU can connect the

tensor and vector units within the same NPUE or across dif-

ferent NPUEs through inter-engine connections (e.g., denoted

as “To NPUE1” and “From NPUE1” in Figure 3). As one

subtile is assigned to an NPUE at a time, we implement

three operating mode configurations by assigning a tile (or

subtile) to multiple NPUEs in different ways. Figure 6 depicts

examples of the operation of a re-configurable MAC array,



where three different methods of assigning a tile (or subtile)

to two NPUEs are illustrated.

Config A. Different NPUEs are responsible for processing

different subtiles in the same tile, and the result of each is

the partial sum of the same output (Figure 6a). Assuming that

NPUE 0 accumulates the output feature maps, the partial sums

generated from the subtiles assigned to NPUE 1 are loaded to

NPUE 0 through a wire connected to NPUE 1 (e.g., denoted as

“From NPUE 1” in Figure 3), after which all the partial sums

are summed at the vector unit. As two 16-input adder-trees in

different NPUEs run simultaneously operating like a 32-input

adder-tree, MAC utilization might degrade if the number of

input channels is not a multiple of 32 in this mode.

Config B. Different NPUEs are responsible for processing

different tiles, which are divided along the spatial dimension

of the input and output feature maps (Figure 6b). Each NPUE

holds the same weights and generates an output feature map

divided along the spatial dimension. Thus, the output from the

tensor unit of each NPUE is transferred to their own vector unit

and processed in parallel. As each NPUE generates an output

feature map divided along the spatial dimension in parallel,

MAC utilization might degrade if either the width or height

is not a multiple of two (i.e., the number of NPUEs in each

core).

Config C. Different NPUEs are responsible for processing

different tiles along the output channel dimension (Figure 6c).

Each NPUE performs computations for different weights using

the same input feature map; hence, each NPUE performs its

own execution in parallel without any communication. As

each NPUE generates an output feature map divided along the

output channel dimension and each NPUE generates 1×1×64
output feature maps at a time, MAC utilization might degrade

if the number of output channels is not a multiple of 128 (i.e.,

2× 64).

During compilation, the proposed NPU selects the operating

mode for each layer among the three configurations described

above. This enables the proposed NPU to achieve higher MAC

utilization.

C. Dynamic Port Assignment

The proposed NPU has designated data fetchers for each

data type (e.g., input, weight, partial sum, and output) and a

shared on-chip memory on which they are stored. As certain

data ports may be busy when the ports for the other data types

are idle, naively assigning an on-chip memory port to each data

type may result in inefficiency. To mitigate such a problem and

completely utilize the on-chip memory bandwidth, we propose

dynamic port assignment, which redirects data suffering from

lack of bandwidth to an idle port. In particular, we focus

on partial sums, which often require low bandwidth during

runtime. A partial sum requires low bandwidth mainly because

of the following: (i) it is only loaded when multiple subtiles

exist in a tile and (ii) it is written back to the memory only

after accumulation is complete. Thus, we implement dynamic

port assignment using the IFM/PSUM fetcher, which can load

MAAOn-chip memory
LL

LH

HL

HH

S0S1S2S3

S0S1S2S3S4

S0S1S2S3S4

S0S1S2S3
S1S2S3S4

S1S2S3S4S5 S0

To Vector Unit

FH FL

WH WL

2B IFM

2B Weight

IFM
Weights

PSUM 
Accumulated 

PSUM Loaded

S1S2S3S4

PSUM 
Concatenated 

WLWHFLFH

WLWHFLFH

WL

WL

WHFLFH

WHFLFH

LL

LH

HL

HH

Fig. 7: Simplified operation diagram of the computation of 16-

bit fixed-point arithmetic by the proposed architecture using

time-multiplexing without additional computational resources

in a data path originally designed for 8-bit fixed-point arith-

metic.

an arbitrary data type among the input feature maps and partial

sum (shown in Figure 3).

The depth-wise convolutional layer, widely utilized in mo-

bile applications, is a representative use case that benefits

from the proposed dynamic port assignment. In depth-wise

convolution, the input feature map is reused only along the

spatial dimension unlike conventional convolution where the

input activation is reused among the kernel weights (i.e.,

channel dimension of the output feature map). Hence, to

execute depth-wise convolution, each MAA requires distinct

input feature maps, unlike conventional convolution where the

input activation is broadcast to every MAA in the NPUE.

Even though four 16× 16 MAAs require distinct 1× 1× 16
input tensors to process depth-wise convolution, the IFM

fetcher of the proposed NPU loads only two 1× 1× 16 input

tensors in a cycle. Thus, without dynamic port assignment,

MAA utilization degrades due to lack of input feature map

bandwidth. However, the proposed IFM/PSUM fetcher enables

the loading of two extra input feature map tensors in a cycle,

thereby fully utilizing the four MAAs.

D. Mixed-precision

Inference using only 8-bit integer inputs (i.e., INT8 format)

improves the latency and energy consumption by sacrificing

the acceptable accuracy (e.g., 1∼2%) in well-known image

classification models [24]. However, to cope with the require-

ment of precise results without compromising on the accuracy,

the proposed NPU also supports inference using 16-bit integer

inputs (i.e., INT16 format). To handle INT16 input data with

minimum overhead, we propose a time-multiplexing method to

support INT16 arithmetic using a data path originally designed

for INT8 input data. By including suitable muxing opera-

tions in the data fetcher and vector unit, the proposed time-

multiplexing approach can handle INT16 input data without

the addition of a multiplier or accumulators.



Figure 7 illustrates an example of the proposed NPU oper-

ation in a time-multiplexing manner using the INT8 data path

when both the input feature map and weight are in INT16

format. To perform INT16 arithmetic using the proposed time-

multiplexing method, 2-byte input data are decomposed into

two 1-byte data (e.g., FH , FL, WH and WL) and multiple

subcomputations (e.g., LL, LH, HL and HH) are performed.

Note that each rectangle represents a 1-byte space. At each

subcomputation, the data fetcher loads the appropriate 1-byte

data and feeds them into the tensor unit to perform INT8

arithmetic. The tensor unit generates a new partial sum and

accumulates it to the most significant 3-byte or 4-byte data of

the previous partial sum. The above process is repeated until

each subcomputation is complete.

For example, four iterations are required when the input

feature map and weight are in INT16 format. In the first

iteration, the lower 1-byte data of the input feature map and

weight, FL and WL, are loaded to the tensor unit and INT8

multiplication is performed (LL in Figure 7). The last 4-byte

data of the partial sum, S[3:0], is valid and stored in the on-

chip memory. In the second iteration (LH in Figure 7), FL and

WH are loaded together to the tensor unit with an appropriate

previous partial sum, i.e., S[3:1]. The multiplication result

is accumulated to the previous partial sum and a new 4-

byte partial sum result, S[4:1], is generated and stored in the

on-chip memory. The third iteration is performed similarly.

In the last iteration, FH and WH are loaded, and the last

multiplication and accumulation are performed. As the last

iteration generates the final output, every valid byte of the

previous partial sum result (i.e., S[4:0]) is loaded. Even though

5-byte data of the previous partial sum are loaded, the 32-bit

accumulator is sufficient for computation because only 3-byte

data (i.e., S[4:2]) is accumulated with the newly computed

result (i.e., S[5:2]). Finally, the last 2-byte data of the previous

partial sum, S[1:0], are concatenated with the accumulator

output and transferred to the vector unit.

VI. EXPERIMENTAL SETUP

Neural network models. We developed RTL implementations

as well as an in-house cycle-accurate simulator and verified

the advantages of the proposed NPU using three DNNs:

Inception-v3 [1], ResNet-50 [22], and MobileNet-v2 [33].

In addition, we measured the end-to-end performance on a

silicon product using three more DNNs: MobileNet [23], U-

Net [34], and DeepLab-v3 [35]. We trained the models on

the ImageNet [36] dataset and randomly selected 32 images

as the input for measurement. We applied a channel-wise

quantization method [37], in which each feature map, weight,

and bias were 8-bit integers. No pruning techniques were

applied.

Simulation. We built an in-house cycle-accurate simulator,

implemented in C++, to model the performance of the pro-

posed NPU. The simulator models a single NPU core, which

comprises two NPUEs and an on-chip scratchpad memory.

The details of the architectural parameters used in our sim-

ulation are listed in Table II. We utilized the simulator for

TABLE II: Architectural parameters for simulation.

The proposed NPU

NPU engines 2
IFM fetchers 2
Weight fetchers 2
PSUM fetchers 2
IFM/PSUM fetchers 2
Sparsity units 2
MAC arrays 8
8-bit multipliers 2048
Adder-trees 128
Accumulators 128

the architectural exploration of various sparsity methods. The

baseline is the proposed NPU, with a fixed config A (described

in Section V-B) and without feature map sparsity (described

in Section V-A) and dynamic port assignment (described in

Section V-C).

Synthesis and fabrication. We synthesized and fabricated

proposed NPU at a 5-nm technology node using the Samsung

cell library and Synopsys Design Compiler (O-2018-06-SP4).

We measured the area breakdown for each hardware compo-

nent through the design compiler report.

VII. EVALUATION

A. Performance

Speedup on simulator. Figure 8a shows the speedup of the

various configurations for feature map zero-skipping compared

to the baseline. The MAC array configuration is fixed as config

A, which is described in Section V-B. Application of intra-lane

zero-skipping along with inter-lane zero-skipping improves

the performance significantly by skipping inefficient compu-

tation. According to our experimental results on Inception-v3,

ResNet-50, and MobileNet-v2, the combined application of

intra-lane zero-skipping and inter-lane zero-skipping realizes

a geomean speedup of 1.39× with a maximum speedup of

1.62× on ResNet-50, where the window size of intra-lane

zero-skipping and inter-lane zero-skipping is four. On applying

intra-lane zero-skipping alone with a window size of one, the

geomean speedup is 1.07× with a maximum speedup of 1.10×
on Inception-v3.

The proposed re-configurable MAC array improves the

performance significantly by increasing MAC utilization. Fig-

ure 8b demonstrates the benefit of a re-configurable MAC

array and dynamic port assignment. On applying the re-

configurable MAC array and dynamic port assignment, the

proposed NPU achieves a geomean speedup of 1.97× with a

maximum speedup of 2.11× on ResNet-50, where the window

size of inter- and intra-lane zero-skipping is four. Even if

zero-skipping is not applied, a speedup of 1.27× speedup is

realized compared to the baseline. MobileNet-v2 , in partic-

ular, derives significant advantage from the re-configurable

MAC array and dynamic port assignment mainly because

dynamic port assignment improves the MAC utilization of

depth-wise convolution, which is prevalent in MobileNet-

v2. In addition, the re-configurable MAC array increases the
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TABLE III: Performance on a silicon product.

Neural Network Models Frames per Second (FPS)

Inception-v3 [1] 290.70
MobileNet [23] 1052.26

MobileNet-v2 [33] 622.54
ResNet-50 [22] 131.13

U-Net [34] 41.48
DeepLab-v3 [35] 36.70

utilization of convolutions where the input channel depth is

narrow. We discuss the effect of the re-configurable MAC array

in Section VII-C.

We observed an imbalance in the number of nonzero values

of the feature map among different input channels. Empiri-

cally, we found that the application of intra-lane zero-skipping

alone resulted in considerable performance improvement if

the given input feature map had been shuffled across the

channel-wise direction before execution (denoted as Shift in

Figure 8). The proposed shuffle method achieves a geomean

speedup of 1.85× with a maximum speedup of 1.95× on

MobileNet-v2. The shuffle method is analyzed in detail in

Section VIII-A.

Performance on a silicon product. Table III depicts the

end-to-end performance of a single NPU core executing six

representative neural network models for mobile devices. We

highly optimized the fabricated SoC using various circuit opti-

TABLE IV: Area breakdown.

Ratio[%]

NPU Core 100.0
NPUE0 23.4
NPUE1 20.3

Data fetcher 3.4
Tensor unit 68.5
Vector unit 17.0
Etc. 11.1

SRAM 50.8
Etc. 5.5

Ratio[%]

Tensor Unit 100.0
Sparsity unit 3.51
Weight buffer 57.10
Multiplier 18.73
Adder-tree 7.56
Accumulator 7.78
Etc. 5.33

mization techniques. In addition, we applied specific compiler

optimization techniques for our architecture, such as deter-

mining the configurations of the re-configurable MAC arrays

(Section V-B) and decomposing stages for mixed-precision

support (Section V-D) as well as common optimization tech-

niques including tiling and layer fusion [38]. Our experimental

results with the silicon product established that the proposed

NPU could execute representative neural networks for mobile

devices in real-time.

B. Area and Energy Efficiency

Figure 9 compares the normalized area-delay product (ADP)

with the baseline of the proposed NPU. Area efficiency is

critical in implementing an efficient mobile SoC. To measure

the ADP, we implemented synthesizable RTL models of the

tensor unit with various window sizes and utilized the area

reported by the Synopsys design compiler. The proposed NPU

with intra- and inter-lane search window sizes of four and

two respectively, achieves a minimum geomean ADP of 0.950.

When implementing the silicon product, we set the intra- and

inter-lane search windows as two in order to minimize the

ADP while satisfying the bandwidth limitation of the on-chip

memory, realizing a minimum geomean ADP of 0.964.

The proposed NPU was fabricated using Samsung 5nm

technology [39]. Figure 10 illustrates the die layout of the

proposed NPU, which comprises three NPU cores and a

control unit. Each NPU core includes two NPU engines and

a 1-MB on-chip scratchpad memory. The NPU core achieves
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an energy efficiency of 13.6 TOPS/W. Table IV reports the

detailed area breakdown of a single NPU core. The tensor unit

occupies most of the NPUE area at 68.5%. The data fetcher,

which fetches data from the on-chip memory with dynamic

port assignment, occupies 3.4% area. The vector unit occupies

17.0% in order to support both diverse operations and the

re-configurable MAC array. In particular, our re-configurable

tile/subtile scheme demands double the number of processing

blocks in the vector unit to handle vector processing of the

independent output tensors. The sparsity unit, which is a logic

for feature map zero-skipping, occupies 2.4% of an NPUE. In

the tensor unit, 57.1% is the weight buffer. Arithmetic circuits,

including multipliers and adders, occupy 23.4% of an NPUE.

C. Effect of the Re-configurable MAC Array

Figure 11 shows the MAC array utilization for all the

configurations introduced in Section V-B. To demonstrate the

advantages of the re-configurable MAC array, we assume that

there is no stall due to lack of memory bandwidth. The first

three bars in this figure depict the MAC utilization for fixed

Config A, B, and C, respectively. In oracle, the optimal MAC

array configuration is decided during offline compilation. The

re-configurable MAC array achieves a geomean utilization of

56.8% with a maximum utilization of 89% on ResNet-50. In

the case of MobileNet-v2, the overall MAC utilization is lower

than those of the other models due to depth-wise convolution.

VIII. ANALYSES AND LESSONS

In this section, we discuss the learning from the experimen-

tal results and our suggestions for the next NPU. Our observa-
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Fig. 12: Nonzero portion of the input feature map, extracted

from Inception-v3.

tions indicate that compromise between the performance and

area is necessary for mobile NPUs.

A. Sparsity: Simple Shift Scheme

The proposed NPU achieves significant performance gain by

skipping ineffectual computations using the sparsity unit (Sec-

tion V-A). inter-lane zero-skipping, in particular, drastically

enhances the performance by enhancing the computational

load balance among lanes. However, as shown in Figure 9,

inter-lane zero-skipping is expensive due to the inclusion of

several multiplexers to search for nonzeros and select the

weight of the other lanes.

We observed the dispersion of the nonzero values, based on

the input channels. Figure 12 depicts an example of the feature

map distribution extracted from Inception-v3. The nonzero

ratio for 32 random channels from three sampled layers of

Inception-v3 is depicted. It can be easily observed that the

zero ratios among the channels are unpredictably imbalanced.

Therefore, instead of using inter-lane search, we suggest a

shift scheme, which shuffles the input feature map across the

channel dimension during run-time. This shift scheme miti-

gates the load imbalance problem among lanes to enable the

efficient skipping of zero values using only intra-lane search.

Even though the shift scheme shows inferior performance

compared to the best configuration that applies intra- and inter-

lane search, it deserves consideration because it reduces the

logic complexity by eliminating multiplexers.

Figure 13 depicts an example of the proposed shift scheme.

If a sparsity unit utilizes only intra-lane search, it requires four

cycles to consume all the input tensors since lane-4 has four

nonzero data. On the other hand, if the shift scheme is applied

with intra-lane search, the proposed NPU requires two cycles

to consume all the input tensors. We assume that the given

kernel size is 2×2. In the proposed architecture, the input

feature maps are flattened into a 1×1×4 tensor and assigned

to each lane. The amount of shift is determined by the kernel

weight coordinates in ascending order from 0–size of kernel-
1. For example, the shift amount is set as 0–3 in ascending

order, in the case of a 2×2 kernel (e.g., Shift-0 to Shift-3 in

Figure 13). There is no additional hardware logic to select the

corresponding weights because the weight fetcher loads the

weights to be aligned with the shifted input feature map.
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Fig. 13: Shift scheme example (four 1× 1× 4 tensors on four

lanes). In this example, intra-lane zero-skipping with the shift

scheme requires two cycles, whereas four cycles are required

without the shift scheme.

Although dynamic detection realizes better performance

than static shuffling, as shown in Figure 8, we demonstrate that

the area-efficient shift scheme with inter-lane zero-skipping

shows the most optimized result in terms of the area-delay

product in Figure 9. The increase in the intra-lane window

size, which has smaller area overhead than the increase in

the inter-lane window size, renders the shift scheme more

effective. Its performance is comparable with the zero-skipping

method used in our silicon product (2×2 window-size), when

the intra-lane search window size is four for all the networks

(Figure 8).

B. MAC configuration: Re-configurability vs. Area

There is unnecessary hardware logic, which is not enabled

for all the configurations, to enhance MAC utilization with the

MAC re-configuration feature described in Section V-B. The

adders in the vector unit add the outputs from the two NPUEs

only for Config A, and half the data-path in the vector unit

for the feature map activation is enabled only for Config B

and C. Moreover, the weights are replicated by the controller

in the weight buffers of each NPUE for Config B.

As shown in Table IV, most of the area of a tensor unit is

occupied by the weight buffer. Thus, we suggest the MAC

array configuration to be fixed as Config B with weight

buffer sharing between the two NPUEs. There is a tradeoff

between MAC utilization and the area overhead mentioned

above. However, the performance degradation on sacrificing

the re-configurable MAC array is negligible, whereas the area

is significantly reduced. The weight buffer sharing is more

effective as increasing parallelism in the spatial dimension.

C. Dynamic On-chip Memory Assignment

In practice, the NPU cannot use the full memory bandwidth

due to bank conflict, which is difficult to predict when multiple

requests for different data type access to the shared on-

chip memory occur simultaneously. To address this problem,

we suggest an additional small-sized memory that can be

dynamically assigned to the input-feature map, partial sums,

or weights. The decision method for assignment is similar to

the dynamic port assignment described in Section V-C.

In order to maintain MAC utilization, the amount of each

data that should be supplied to the MAC differs for each layer

because of the variety of layers. For example, a convolution

layer with a small width and height feature map has small

weight reuse, and the MAC requires larger weight bandwidth

than that of a layer with a large width and height feature map.

On the other hand, as the layer does not need considerable

storage for the partial sum, an additional small-sized memory,

which stores the partial sum, enables the main shared on-

chip memory to provide a larger weight bandwidth. The

performance of a fully-connected layer is generally limited

by the memory bandwidth for loading weights from the on-

chip memory. Using an additional small-sized memory to store

the feature map allows the main memory to provide a large

bandwidth for loading weights.

IX. CONCLUSION

In this study, we discussed the crucial prerequisites for

developing NPU architecture for a commercial mobile SoC.

In addition to possessing processing efficiency in mobile

environments, the NPU needs to be flexible to cope with

various applications and target performances. Therefore, when

implementing our flagship mobile NPU, we employed several

features such as an adder-tree-based inner-product engine

with mixed-precision, zero-skipping based on IFM sparsity,

dynamic port assignment, and re-configurable MAC datapath.

Evaluation on a silicon die indicated that our NPU achieved

a peak energy-efficiency of 13.6 TOPS/W and 131.13 FPS on

ResNet-50. In addition, extensive simulations verified that our

optimization boosted the speed by a factor of 1.79 compared

to the dense baseline.

Based on the implementation experience and evaluation re-

sults, additional analysis was performed to further the enhance

the NPU performance, and three findings were presented: (i)

Inter-lane static shuffling can be a satisfactory compromise

between the hardware complexity and performance due to

the uneven distribution pattern of nonzero IFM. (ii) Limiting

the re-configurability can be reduce the performance slightly;

however, it can reduce the area significantly. (iii)It would be

advantageous to provide an extra memory block to offer more

flexibility in loading the IFM, weights, or PSUM, considering

bank conflict in the on-chip scratchpad memory. These find-

ings can contribute to improving the NPU architecture and will

be applied in our future development. The practical issues dealt

with in this study and the lessons learned can be beneficial for

the advancement of mobile NPUs.
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